Archives AI News

A General Framework of Epistemic Forgetting and its Instantiation by Ranking Functions

arXiv:2508.21441v1 Announce Type: new Abstract: Forgetting as a knowledge management operation deliberately ignores parts of the knowledge and beliefs of an agent, for various reasons. Forgetting has many facets, one may want to forget parts of the syntax, a proposition, or a conditional. In the literature, two main operators suitable for performing forgetting have been proposed and investigated in depth: First, variable elimination is a syntactical method that blends out certain atomic variables to focus on the rest of the language. It has been mainly used in the area of logic programming and answer set programming. Second, contraction in AGM belief revision theory effectively removes propositions from belief sets under logical deduction. Both operations rely mainly on classical logics. In this article, we take an epistemic perspective and study forgetting operations in epistemic states with richer semantic structures, but with clear links to propositional logic. This allows us to investigate what forgetting in the epistemic background means, thereby lifting well-known and novel forgetting operations to the epistemic level. We present five general types of epistemic forgetting and instantiate them with seven concrete forgetting operations for Spohn's ranking functions. We take inspiration from postulates of forgetting both from logic programming and AGM theory to propose a rich landscape of axioms for evaluating forgetting operations. Finally, we evaluate all concrete forgetting operations according to all postulates, leading to a novel comprehensive overview highlighting differences and commonalities among the forgetting operators.

Guiding a diffusion model using sliding windows

arXiv:2411.10257v3 Announce Type: replace-cross Abstract: Guidance is a widely used technique for diffusion models to enhance sample quality. Technically, guidance is realised by using an auxiliary model that generalises more broadly than the primary model. Using a 2D toy example, we first show that it is highly beneficial when the auxiliary model exhibits similar but stronger generalisation errors than the primary model. Based on this insight, we introduce emph{masked sliding window guidance (M-SWG)}, a novel, training-free method. M-SWG upweights long-range spatial dependencies by guiding the primary model with itself by selectively restricting its receptive field. M-SWG requires neither access to model weights from previous iterations, additional training, nor class conditioning. M-SWG achieves a superior Inception score (IS) compared to previous state-of-the-art training-free approaches, without introducing sample oversaturation. In conjunction with existing guidance methods, M-SWG reaches state-of-the-art Frechet DINOv2 distance on ImageNet using EDM2-XXL and DiT-XL. The code is available at https://github.com/HHU-MMBS/swg_bmvc2025_official.

MultiFluxAI Enhancing Platform Engineering with Advanced Agent-Orchestrated Retrieval Systems

arXiv:2508.21307v1 Announce Type: new Abstract: MultiFluxAI is an innovative AI platform developed to address the challenges of managing and integrating vast, disparate data sources in product engineering across application domains. It addresses both current and new service related queries that enhance user engagement in the digital ecosystem. This platform leverages advanced AI techniques, such as Generative AI, vectorization, and agentic orchestration to provide dynamic and context-aware responses to complex user queries.

Multi-Ontology Integration with Dual-Axis Propagation for Medical Concept Representation

arXiv:2508.21320v1 Announce Type: new Abstract: Medical ontology graphs map external knowledge to medical codes in electronic health records via structured relationships. By leveraging domain-approved connections (e.g., parent-child), predictive models can generate richer medical concept representations by incorporating contextual information from related concepts. However, existing literature primarily focuses on incorporating domain knowledge from a single ontology system, or from multiple ontology systems (e.g., diseases, drugs, and procedures) in isolation, without integrating them into a unified learning structure. Consequently, concept representation learning often remains limited to intra-ontology relationships, overlooking cross-ontology connections. In this paper, we propose LINKO, a large language model (LLM)-augmented integrative ontology learning framework that leverages multiple ontology graphs simultaneously by enabling dual-axis knowledge propagation both within and across heterogeneous ontology systems to enhance medical concept representation learning. Specifically, LINKO first employs LLMs to provide a graph-retrieval-augmented initialization for ontology concept embedding, through an engineered prompt that includes concept descriptions, and is further augmented with ontology context. Second, our method jointly learns the medical concepts in diverse ontology graphs by performing knowledge propagation in two axes: (1) intra-ontology vertical propagation across hierarchical ontology levels and (2) inter-ontology horizontal propagation within every level in parallel. Last, through extensive experiments on two public datasets, we validate the superior performance of LINKO over state-of-the-art baselines. As a plug-in encoder compatible with existing EHR predictive models, LINKO further demonstrates enhanced robustness in scenarios involving limited data availability and rare disease prediction.

Think in Games: Learning to Reason in Games via Reinforcement Learning with Large Language Models

arXiv:2508.21365v1 Announce Type: new Abstract: Large language models (LLMs) excel at complex reasoning tasks such as mathematics and coding, yet they frequently struggle with simple interactive tasks that young children perform effortlessly. This discrepancy highlights a critical gap between declarative knowledge (knowing about something) and procedural knowledge (knowing how to do something). Although traditional reinforcement learning (RL) agents can acquire procedural knowledge through environmental interaction, they often operate as black boxes and require substantial training data. In contrast, LLMs possess extensive world knowledge and reasoning capabilities, but are unable to effectively convert this static knowledge into dynamic decision-making in interactive settings. To address this challenge, we propose Think in Games (TiG), a novel framework that empowers LLMs to develop procedural understanding through direct interaction with game environments, while retaining their inherent reasoning and explanatory abilities. Specifically, TiG reformulates RL-based decision-making as a language modeling task: LLMs generate language-guided policies, which are refined iteratively through online reinforcement learning based on environmental feedback. Our experimental results show that TiG successfully bridges the gap between declarative and procedural knowledge, achieving competitive performance with dramatically lower data and computational demands compared to conventional RL methods. Moreover, TiG provides step-by-step natural language explanations for its decisions, greatly improving transparency and interpretability in complex interactive tasks.

AI Compute Architecture and Evolution Trends

arXiv:2508.21394v1 Announce Type: new Abstract: The focus of AI development has shifted from academic research to practical applications. However, AI development faces numerous challenges at various levels. This article will attempt to analyze the opportunities and challenges of AI from several different perspectives using a structured approach. This article proposes a seven-layer model for AI compute architecture, including Physical Layer, Link Layer, Neural Network Layer, Context Layer, Agent Layer, Orchestrator Layer, and Application Layer, from bottom to top. It also explains how AI computing has evolved into this 7-layer architecture through the three-stage evolution on large-scale language models (LLMs). For each layer, we describe the development trajectory and key technologies. In Layers 1 and 2 we discuss AI computing issues and the impact of Scale-Up and Scale-Out strategies on computing architecture. In Layer 3 we explore two different development paths for LLMs. In Layer 4 we discuss the impact of contextual memory on LLMs and compares it to traditional processor memory. In Layers 5 to 7 we discuss the trends of AI agents and explore the issues in evolution from a single AI agent to an AI-based ecosystem, and their impact on the AI industry. Furthermore, AI development involves not only technical challenges but also the economic issues to build self-sustainable ecosystem. This article analyzes the internet industry to provide predictions on the future trajectory of AI development.

AHELM: A Holistic Evaluation of Audio-Language Models

arXiv:2508.21376v1 Announce Type: new Abstract: Evaluations of audio-language models (ALMs) -- multimodal models that take interleaved audio and text as input and output text -- are hindered by the lack of standardized benchmarks; most benchmarks measure only one or two capabilities and omit evaluative aspects such as fairness or safety. Furthermore, comparison across models is difficult as separate evaluations test a limited number of models and use different prompting methods and inference parameters. To address these shortfalls, we introduce AHELM, a benchmark that aggregates various datasets -- including 2 new synthetic audio-text datasets called PARADE, which evaluates the ALMs on avoiding stereotypes, and CoRe-Bench, which measures reasoning over conversational audio through inferential multi-turn question answering -- to holistically measure the performance of ALMs across 10 aspects we have identified as important to the development and usage of ALMs: audio perception, knowledge, reasoning, emotion detection, bias, fairness, multilinguality, robustness, toxicity, and safety. We also standardize the prompts, inference parameters, and evaluation metrics to ensure equitable comparisons across models. We test 14 open-weight and closed-API ALMs from 3 developers and 3 additional simple baseline systems each consisting of an automatic speech recognizer and a language model. Our results show that while Gemini 2.5 Pro ranks top in 5 out of 10 aspects, it exhibits group unfairness ($p=0.01$) on ASR tasks whereas most of the other models do not. We also find that the baseline systems perform reasonably well on AHELM, with one ranking 5th overall despite having only speech-to-text capabilities. For transparency, all raw prompts, model generations, and outputs are available on our website at https://crfm.stanford.edu/helm/audio/v1.0.0. AHELM is intended to be a living benchmark and new datasets and models will be added over time.

Latent Adaptive Planner for Dynamic Manipulation

arXiv:2505.03077v2 Announce Type: replace-cross Abstract: We present the Latent Adaptive Planner (LAP), a trajectory-level latent-variable policy for dynamic nonprehensile manipulation (e.g., box catching) that formulates planning as inference in a low-dimensional latent space and is learned effectively from human demonstration videos. During execution, LAP achieves real-time adaptation by maintaining a posterior over the latent plan and performing variational replanning as new observations arrive. To bridge the embodiment gap between humans and robots, we introduce a model-based proportional mapping that regenerates accurate kinematic-dynamic joint states and object positions from human demonstrations. Through challenging box catching experiments with varying object properties, LAP demonstrates superior success rates, trajectory smoothness, and energy efficiency by learning human-like compliant motions and adaptive behaviors. Overall, LAP enables dynamic manipulation with real-time adaptation and successfully transfer across heterogeneous robot platforms using the same human demonstration videos.

CARJAN: Agent-Based Generation and Simulation of Traffic Scenarios with AJAN

arXiv:2508.21411v1 Announce Type: new Abstract: User-friendly modeling and virtual simulation of urban traffic scenarios with different types of interacting agents such as pedestrians, cyclists and autonomous vehicles remains a challenge. We present CARJAN, a novel tool for semi-automated generation and simulation of such scenarios based on the multi-agent engineering framework AJAN and the driving simulator CARLA. CARJAN provides a visual user interface for the modeling, storage and maintenance of traffic scenario layouts, and leverages SPARQL Behavior Tree-based decision-making and interactions for agents in dynamic scenario simulations in CARLA. CARJAN provides a first integrated approach for interactive, intelligent agent-based generation and simulation of virtual traffic scenarios in CARLA.

Invited Paper: Feature-to-Classifier Co-Design for Mixed-Signal Smart Flexible Wearables for Healthcare at the Extreme Edge

arXiv:2508.19637v2 Announce Type: replace-cross Abstract: Flexible Electronics (FE) offer a promising alternative to rigid silicon-based hardware for wearable healthcare devices, enabling lightweight, conformable, and low-cost systems. However, their limited integration density and large feature sizes impose strict area and power constraints, making ML-based healthcare systems-integrating analog frontend, feature extraction and classifier-particularly challenging. Existing FE solutions often neglect potential system-wide solutions and focus on the classifier, overlooking the substantial hardware cost of feature extraction and Analog-to-Digital Converters (ADCs)-both major contributors to area and power consumption. In this work, we present a holistic mixed-signal feature-to-classifier co-design framework for flexible smart wearable systems. To the best of our knowledge, we design the first analog feature extractors in FE, significantly reducing feature extraction cost. We further propose an hardware-aware NAS-inspired feature selection strategy within ML training, enabling efficient, application-specific designs. Our evaluation on healthcare benchmarks shows our approach delivers highly accurate, ultra-area-efficient flexible systems-ideal for disposable, low-power wearable monitoring.