Archives AI News

Adaptive Monitoring and Real-World Evaluation of Agentic AI Systems

arXiv:2509.00115v1 Announce Type: new Abstract: Agentic artificial intelligence (AI) -- multi-agent systems that combine large language models with external tools and autonomous planning -- are rapidly transitioning from research laboratories into high-stakes domains. Our earlier "Basic" paper introduced a five-axis framework and proposed preliminary metrics such as goal drift and harm reduction but did not provide an algorithmic instantiation or empirical evidence. This "Advanced" sequel fills that gap. First, we revisit recent benchmarks and industrial deployments to show that technical metrics still dominate evaluations: a systematic review of 84 papers from 2023--2025 found that 83% report capability metrics while only 30% consider human-centred or economic axes [2]. Second, we formalise an Adaptive Multi-Dimensional Monitoring (AMDM) algorithm that normalises heterogeneous metrics, applies per-axis exponentially weighted moving-average thresholds and performs joint anomaly detection via the Mahalanobis distance. Third, we conduct simulations and real-world experiments. AMDM cuts anomaly-detection latency from 12.3 s to 5.6 s on simulated goal drift and reduces false-positive rates from 4.5% to 0.9% compared with static thresholds. We present a comparison table and ROC/PR curves, and we reanalyse case studies to surface missing metrics. Code, data and a reproducibility checklist accompany this paper to facilitate replication.

Ensemble Debates with Local Large Language Models for AI Alignment

arXiv:2509.00091v1 Announce Type: new Abstract: As large language models (LLMs) take on greater roles in high-stakes decisions, alignment with human values is essential. Reliance on proprietary APIs limits reproducibility and broad participation. We study whether local open-source ensemble debates can improve alignmentoriented reasoning. Across 150 debates spanning 15 scenarios and five ensemble configurations, ensembles outperform single-model baselines on a 7-point rubric (overall: 3.48 vs. 3.13), with the largest gains in reasoning depth (+19.4%) and argument quality (+34.1%). Improvements are strongest for truthfulness (+1.25 points) and human enhancement (+0.80). We provide code, prompts, and a debate data set, providing an accessible and reproducible foundation for ensemble-based alignment evaluation.

MODE: Mixture of Document Experts for RAG

arXiv:2509.00100v1 Announce Type: new Abstract: Retrieval-Augmented Generation (RAG) often relies on large vector databases and cross-encoders tuned for large-scale corpora, which can be excessive for small, domain-specific collections. We present MODE (Mixture of Document Experts), a lightweight alternative that replaces fine-grained nearest-neighbor search with cluster-and-route retrieval. Documents are embedded, grouped into semantically coherent clusters, and represented by cached centroids. At query time, we route to the top centroid(s) and retrieve context only within those clusters, eliminating external vector-database infrastructure and reranking while keeping latency low. On HotpotQA and SQuAD corpora with 100-500 chunks, MODE matches or exceeds a dense-retrieval baseline in answer quality while reducing end-to-end retrieval time. Ablations show that cluster granularity and multi-cluster routing control the recall/precision trade-off, and that tighter clusters improve downstream accuracy. MODE offers a practical recipe for small and medium corpora where simplicity, speed, and topical focus matter.

Wrong Face, Wrong Move: The Social Dynamics of Emotion Misperception in Agent-Based Models

arXiv:2509.00080v1 Announce Type: new Abstract: The ability of humans to detect and respond to others' emotions is fundamental to understanding social behavior. Here, agents are instantiated with emotion classifiers of varying accuracy to study the impact of perceptual accuracy on emergent emotional and spatial behavior. Agents are visually represented with face photos from the KDEF database and endowed with one of three classifiers trained on the JAFFE (poor), CK+ (medium), or KDEF (high) datasets. Agents communicate locally on a 2D toroidal lattice, perceiving neighbors' emotional state based on their classifier and responding with movement toward perceived positive emotions and away from perceived negative emotions. Note that the agents respond to perceived, instead of ground-truth, emotions, introducing systematic misperception and frustration. A battery of experiments is carried out on homogeneous and heterogeneous populations and scenarios with repeated emotional shocks. Results show that low-accuracy classifiers on the part of the agent reliably result in diminished trust, emotional disintegration into sadness, and disordered social organization. By contrast, the agent that develops high accuracy develops hardy emotional clusters and resilience to emotional disruptions. Even in emotionally neutral scenarios, misperception is enough to generate segregation and disintegration of cohesion. These findings underscore the fact that biases or imprecision in emotion recognition may significantly warp social processes and disrupt emotional integration.

Entropy-Guided Loop: Achieving Reasoning through Uncertainty-Aware Generation

arXiv:2509.00079v1 Announce Type: new Abstract: Reasoning models often outperform smaller models but at 3--5$times$ higher cost and added latency. We present entropy-guided refinement: a lightweight, test-time loop that uses token-level uncertainty to trigger a single, targeted refinement pass. We extract logprobs, compute Shannon entropy on top-$k$ alternatives, and apply a simple OR-logic trigger over perplexity, maximum token entropy, and low-confidence-token count. Unlike approaches that use entropy only for measurement or decoding, we pass a compact uncertainty report (tokens, confidences, alternatives, context) back to the model to guide corrective edits. On representative technical queries across reasoning, mathematics, and code generation tasks, a small model with our loop approaches 95% of a reference reasoning model's quality at approximately one-third of the cost. The method achieves selective refinement on ~31% of responses while improving accuracy by 16 percentage points over single-pass inference. We demonstrate that this uncertainty-aware loop provides an effective middle ground between single-pass inference and expensive reasoning chains, making it practical for production deployments where both quality and cost matter.

Language and Experience: A Computational Model of Social Learning in Complex Tasks

arXiv:2509.00074v1 Announce Type: new Abstract: The ability to combine linguistic guidance from others with direct experience is central to human development, enabling safe and rapid learning in new environments. How do people integrate these two sources of knowledge, and how might AI systems? We present a computational framework that models social learning as joint probabilistic inference over structured, executable world models given sensorimotor and linguistic data. We make this possible by turning a pretrained language model into a probabilistic model of how humans share advice conditioned on their beliefs, allowing our agents both to generate advice for others and to interpret linguistic input as evidence during Bayesian inference. Using behavioral experiments and simulations across 10 video games, we show how linguistic guidance can shape exploration and accelerate learning by reducing risky interactions and speeding up key discoveries in both humans and models. We further explore how knowledge can accumulate across generations through iterated learning experiments and demonstrate successful knowledge transfer between humans and models -- revealing how structured, language-compatible representations might enable human-machine collaborative learning.

DiffDecompose: Layer-Wise Decomposition of Alpha-Composited Images via Diffusion Transformers

arXiv:2505.21541v3 Announce Type: replace-cross Abstract: Diffusion models have recently motivated great success in many generation tasks like object removal. Nevertheless, existing image decomposition methods struggle to disentangle semi-transparent or transparent layer occlusions due to mask prior dependencies, static object assumptions, and the lack of datasets. In this paper, we delve into a novel task: Layer-Wise Decomposition of Alpha-Composited Images, aiming to recover constituent layers from single overlapped images under the condition of semi-transparent/transparent alpha layer non-linear occlusion. To address challenges in layer ambiguity, generalization, and data scarcity, we first introduce AlphaBlend, the first large-scale and high-quality dataset for transparent and semi-transparent layer decomposition, supporting six real-world subtasks (e.g., translucent flare removal, semi-transparent cell decomposition, glassware decomposition). Building on this dataset, we present DiffDecompose, a diffusion Transformer-based framework that learns the posterior over possible layer decompositions conditioned on the input image, semantic prompts, and blending type. Rather than regressing alpha mattes directly, DiffDecompose performs In-Context Decomposition, enabling the model to predict one or multiple layers without per-layer supervision, and introduces Layer Position Encoding Cloning to maintain pixel-level correspondence across layers. Extensive experiments on the proposed AlphaBlend dataset and public LOGO dataset verify the effectiveness of DiffDecompose. The code and dataset will be available upon paper acceptance. Our code will be available at: https://github.com/Wangzt1121/DiffDecompose.

Know When to Explore: Difficulty-Aware Certainty as a Guide for LLM Reinforcement Learning

arXiv:2509.00125v1 Announce Type: new Abstract: Reinforcement Learning with Verifiable Feedback (RLVF) has become a key technique for enhancing the reasoning abilities of Large Language Models (LLMs). However, its reliance on sparse, outcome based rewards, which only indicate if a final answer is correct or not, fails to provide granular guidance on the reasoning process itself. This limitation hinders efficient learning, as the model cannot distinguish between high quality and inefficient solutions, nor can it learn effectively from different types of failures. To address this, we observe that an LLMs self-certainty often correlates with task difficulty and solution quality. We introduce Difficulty Aware Certainty guided Exploration (DACE), a novel RL algorithm that leverages this insight to dynamically balance the exploration exploitation trade-off. DACE assesses task difficulty online based on the policys success rate. It then uses this signal to modulate an intrinsic reward: for difficult tasks where the model is struggling, DACE encourages exploration by penalizing high certainty; for easier tasks, it encourages learning efficiency by rewarding high certainty. Experiments on challenging mathematical reasoning benchmarks (AIME, MATH) show that DACE significantly outperforms strong baselines. The DACE-trained models not only achieve higher accuracy but also demonstrate more robust performance when scaling test-time compute, validating that our adaptive approach fosters effective exploration without sacrificing precision.

AR-LIF: Adaptive reset leaky integrate-and-fire neuron for spiking neural networks

arXiv:2507.20746v2 Announce Type: replace-cross Abstract: Spiking neural networks offer low energy consumption due to their event-driven nature. Beyond binary spike outputs, their intrinsic floating-point dynamics merit greater attention. Neuronal threshold levels and reset modes critically determine spike count and timing. Hard reset cause information loss, while soft reset apply uniform treatment to neurons. To address these issues, we design an adaptive reset neuron that establishes relationships between inputs, outputs, and reset, while integrating a simple yet effective threshold adjustment strategy. Experimental results demonstrate that our method achieves excellent performance while maintaining lower energy consumption. In particular, it attains state-of-the-art accuracy on Tiny-ImageNet and CIFAR10-DVS. Codes are available at https://github.com/2ephyrus/AR-LIF.

Optimizing Health Coverage in Ethiopia: A Learning-augmented Approach and Persistent Proportionality Under an Online Budget

arXiv:2509.00135v1 Announce Type: new Abstract: As part of nationwide efforts aligned with the United Nations' Sustainable Development Goal 3 on Universal Health Coverage, Ethiopia's Ministry of Health is strengthening health posts to expand access to essential healthcare services. However, only a fraction of this health system strengthening effort can be implemented each year due to limited budgets and other competing priorities, thus the need for an optimization framework to guide prioritization across the regions of Ethiopia. In this paper, we develop a tool, Health Access Resource Planner (HARP), based on a principled decision-support optimization framework for sequential facility planning that aims to maximize population coverage under budget uncertainty while satisfying region-specific proportionality targets at every time step. We then propose two algorithms: (i) a learning-augmented approach that improves upon expert recommendations at any single-step; and (ii) a greedy algorithm for multi-step planning, both with strong worst-case approximation estimation. In collaboration with the Ethiopian Public Health Institute and Ministry of Health, we demonstrated the empirical efficacy of our method on three regions across various planning scenarios.