Archives AI News

Doctoral Thesis: Geometric Deep Learning For Camera Pose Prediction, Registration, Depth Estimation, and 3D Reconstruction

arXiv:2509.01873v1 Announce Type: cross Abstract: Modern deep learning developments create new opportunities for 3D mapping technology, scene reconstruction pipelines, and virtual reality development. Despite advances in 3D deep learning technology, direct training of deep learning models on 3D data faces challenges due to the high dimensionality inherent in 3D data and the scarcity of labeled datasets. Structure-from-motion (SfM) and Simultaneous Localization and Mapping (SLAM) exhibit robust performance when applied to structured indoor environments but often struggle with ambiguous features in unstructured environments. These techniques often struggle to generate detailed geometric representations effective for downstream tasks such as rendering and semantic analysis. Current limitations require the development of 3D representation methods that combine traditional geometric techniques with deep learning capabilities to generate robust geometry-aware deep learning models. The dissertation provides solutions to the fundamental challenges in 3D vision by developing geometric deep learning methods tailored for essential tasks such as camera pose estimation, point cloud registration, depth prediction, and 3D reconstruction. The integration of geometric priors or constraints, such as including depth information, surface normals, and equivariance into deep learning models, enhances both the accuracy and robustness of geometric representations. This study systematically investigates key components of 3D vision, including camera pose estimation, point cloud registration, depth estimation, and high-fidelity 3D reconstruction, demonstrating their effectiveness across real-world applications such as digital cultural heritage preservation and immersive VR/AR environments.

Text-to-Layout: A Generative Workflow for Drafting Architectural Floor Plans Using LLMs

arXiv:2509.00543v1 Announce Type: new Abstract: This paper presents the development of an AI-powered workflow that uses Large Language Models (LLMs) to assist in drafting schematic architectural floor plans from natural language prompts. The proposed system interprets textual input to automatically generate layout options including walls, doors, windows, and furniture arrangements. It combines prompt engineering, a furniture placement refinement algorithm, and Python scripting to produce spatially coherent draft plans compatible with design tools such as Autodesk Revit. A case study of a mid-sized residential layout demonstrates the approach's ability to generate functional and structured outputs with minimal manual effort. The workflow is designed for transparent replication, with all key prompt specifications documented to enable independent implementation by other researchers. In addition, the generated models preserve the full range of Revit-native parametric attributes required for direct integration into professional BIM processes.

Fantastic Pretraining Optimizers and Where to Find Them

arXiv:2509.02046v1 Announce Type: cross Abstract: AdamW has long been the dominant optimizer in language model pretraining, despite numerous claims that alternative optimizers offer 1.4 to 2x speedup. We posit that two methodological shortcomings have obscured fair comparisons and hindered practical adoption: (i) unequal hyperparameter tuning and (ii) limited or misleading evaluation setups. To address these two issues, we conduct a systematic study of ten deep learning optimizers across four model scales (0.1B-1.2B parameters) and data-to-model ratios (1-8x the Chinchilla optimum). We find that fair and informative comparisons require rigorous hyperparameter tuning and evaluations across a range of model scales and data-to-model ratios, performed at the end of training. First, optimal hyperparameters for one optimizer may be suboptimal for another, making blind hyperparameter transfer unfair. Second, the actual speedup of many proposed optimizers over well-tuned baselines is lower than claimed and decreases with model size to only 1.1x for 1.2B parameter models. Thirdly, comparing intermediate checkpoints before reaching the target training budgets can be misleading, as rankings between two optimizers can flip during training due to learning rate decay. Through our thorough investigation, we find that all the fastest optimizers such as Muon and Soap, use matrices as preconditioners -- multiplying gradients with matrices rather than entry-wise scalars. However, the speedup of matrix-based optimizers is inversely proportional to model scale, decreasing from 1.4x over AdamW for 0.1B parameter models to merely 1.1x for 1.2B parameter models.

Social World Models

arXiv:2509.00559v1 Announce Type: new Abstract: Humans intuitively navigate social interactions by simulating unspoken dynamics and reasoning about others' perspectives, even with limited information. In contrast, AI systems struggle to automatically structure and reason about these implicit social contexts. In this paper, we introduce a novel structured social world representation formalism (S3AP), designed to help AI systems reason more effectively about social dynamics. Following a POMDP-driven design, S3AP represents social interactions as structured tuples, such as state, observation, agent actions, and mental states, which can be automatically induced from free-form narratives or other inputs. We first show S3AP can help LLMs better understand social narratives across 5 social reasoning tasks (e.g., +51% improvement on FANToM's theory-of-mind reasoning with OpenAI's o1), reaching new state-of-the-art (SOTA) performance. We then induce social world models from these structured representations, demonstrating their ability to predict future social dynamics and improve agent decision-making, yielding up to +18% improvement on the SOTOPIA social interaction benchmark. Our findings highlight the promise of S3AP as a powerful, general-purpose representation for social world states, enabling the development of more socially-aware systems that better navigate social interactions.

Beyond Ensembles: Simulating All-Atom Protein Dynamics in a Learned Latent Space

arXiv:2509.02196v1 Announce Type: cross Abstract: Simulating the long-timescale dynamics of biomolecules is a central challenge in computational science. While enhanced sampling methods can accelerate these simulations, they rely on pre-defined collective variables that are often difficult to identify. A recent generative model, LD-FPG, demonstrated that this problem could be bypassed by learning to sample the static equilibrium ensemble as all-atom deformations from a reference structure, establishing a powerful method for all-atom ensemble generation. However, while this approach successfully captures a system's probable conformations, it does not model the temporal evolution between them. Here we extend LD-FPG with a temporal propagator that operates within the learned latent space and compare three classes: (i) score-guided Langevin dynamics, (ii) Koopman-based linear operators, and (iii) autoregressive neural networks. Within a unified encoder-propagator-decoder framework, we evaluate long-horizon stability, backbone and side-chain ensemble fidelity, and functional free-energy landscapes. Autoregressive neural networks deliver the most robust long rollouts; score-guided Langevin best recovers side-chain thermodynamics when the score is well learned; and Koopman provides an interpretable, lightweight baseline that tends to damp fluctuations. These results clarify the trade-offs among propagators and offer practical guidance for latent-space simulators of all-atom protein dynamics.

BALM-TSF: Balanced Multimodal Alignment for LLM-Based Time Series Forecasting

arXiv:2509.00622v1 Announce Type: new Abstract: Time series forecasting is a long-standing and highly challenging research topic. Recently, driven by the rise of large language models (LLMs), research has increasingly shifted from purely time series methods toward harnessing textual modalities to enhance forecasting performance. However, the vast discrepancy between text and temporal data often leads current multimodal architectures to over-emphasise one modality while neglecting the other, resulting in information loss that harms forecasting performance. To address this modality imbalance, we introduce BALM-TSF (Balanced Multimodal Alignment for LLM-Based Time Series Forecasting), a lightweight time series forecasting framework that maintains balance between the two modalities. Specifically, raw time series are processed by the time series encoder, while descriptive statistics of raw time series are fed to an LLM with learnable prompt, producing compact textual embeddings. To ensure balanced cross-modal context alignment of time series and textual embeddings, a simple yet effective scaling strategy combined with a contrastive objective then maps these textual embeddings into the latent space of the time series embeddings. Finally, the aligned textual semantic embeddings and time series embeddings are together integrated for forecasting. Extensive experiments on standard benchmarks show that, with minimal trainable parameters, BALM-TSF achieves state-of-the-art performance in both long-term and few-shot forecasting, confirming its ability to harness complementary information from text and time series. Code is available at https://github.com/ShiqiaoZhou/BALM-TSF.

Poisoned at Scale: A Scalable Audit Uncovers Hidden Scam Endpoints in Production LLMs

arXiv:2509.02372v1 Announce Type: cross Abstract: Large Language Models (LLMs) have become critical to modern software development, but their reliance on internet datasets for training introduces a significant security risk: the absorption and reproduction of malicious content. To evaluate this threat, this paper introduces a scalable, automated audit framework that synthesizes innocuous, developer-style prompts from known scam databases to query production LLMs and determine if they generate code containing harmful URLs. We conducted a large-scale evaluation across four production LLMs (GPT-4o, GPT-4o-mini, Llama-4-Scout, and DeepSeek-V3), and found a systemic vulnerability, with all tested models generating malicious code at a non-negligible rate. On average, 4.2% of programs generated in our experiments contained malicious URLs. Crucially, this malicious code is often generated in response to benign prompts. We manually validate the prompts which cause all four LLMs to generate malicious code, and resulting in 177 innocuous prompts that trigger all models to produce harmful outputs. These results provide strong empirical evidence that the training data of production LLMs has been successfully poisoned at scale, underscoring the urgent need for more robust defense mechanisms and post-generation safety checks to mitigate the propagation of hidden security threats.

NetGent: Agent-Based Automation of Network Application Workflows

arXiv:2509.00625v1 Announce Type: new Abstract: We present NetGent, an AI-agent framework for automating complex application workflows to generate realistic network traffic datasets. Developing generalizable ML models for networking requires data collection from network environments with traffic that results from a diverse set of real-world web applications. However, using existing browser automation tools that are diverse, repeatable, realistic, and efficient remains fragile and costly. NetGent addresses this challenge by allowing users to specify workflows as natural-language rules that define state-dependent actions. These abstract specifications are compiled into nondeterministic finite automata (NFAs), which a state synthesis component translates into reusable, executable code. This design enables deterministic replay, reduces redundant LLM calls through state caching, and adapts quickly when application interfaces change. In experiments, NetGent automated more than 50+ workflows spanning video-on-demand streaming, live video streaming, video conferencing, social media, and web scraping, producing realistic traffic traces while remaining robust to UI variability. By combining the flexibility of language-based agents with the reliability of compiled execution, NetGent provides a scalable foundation for generating the diverse, repeatable datasets needed to advance ML in networking.

Hypothesis Network Planned Exploration for Rapid Meta-Reinforcement Learning Adaptation

arXiv:2311.03701v2 Announce Type: replace Abstract: Meta-Reinforcement Learning (Meta-RL) learns optimal policies across a series of related tasks. A central challenge in Meta-RL is rapidly identifying which previously learned task is most similar to a new one, in order to adapt to it quickly. Prior approaches, despite significant success, typically rely on passive exploration strategies such as periods of random action to characterize the new task in relation to the learned ones. While sufficient when tasks are clearly distinguishable, passive exploration limits adaptation speed when informative transitions are rare or revealed only by specific behaviors. We introduce Hypothesis-Planned Exploration (HyPE), a method that actively plans sequences of actions during adaptation to efficiently identify the most similar previously learned task. HyPE operates within a joint latent space, where state-action transitions from different tasks form distinct paths. This latent-space planning approach enables HyPE to serve as a drop-in improvement for most model-based Meta-RL algorithms. By using planned exploration, HyPE achieves exponentially lower failure probability compared to passive strategies when informative transitions are sparse. On a natural language Alchemy game, HyPE identified the closest task in 65-75% of trials, far outperforming the 18-28% passive exploration baseline, and yielding up to 4x more successful adaptations under the same sample budget.

On Verifiable Legal Reasoning: A Multi-Agent Framework with Formalized Knowledge Representations

arXiv:2509.00710v1 Announce Type: new Abstract: Legal reasoning requires both precise interpretation of statutory language and consistent application of complex rules, presenting significant challenges for AI systems. This paper introduces a modular multi-agent framework that decomposes legal reasoning into distinct knowledge acquisition and application stages. In the first stage, specialized agents extract legal concepts and formalize rules to create verifiable intermediate representations of statutes. The second stage applies this knowledge to specific cases through three steps: analyzing queries to map case facts onto the ontology schema, performing symbolic inference to derive logically entailed conclusions, and generating final answers using a programmatic implementation that operationalizes the ontological knowledge. This bridging of natural language understanding with symbolic reasoning provides explicit and verifiable inspection points, significantly enhancing transparency compared to end-to-end approaches. Evaluation on statutory tax calculation tasks demonstrates substantial improvements, with foundational models achieving 76.4% accuracy compared to 18.8% baseline performance, effectively narrowing the performance gap between reasoning and foundational models. These findings suggest that modular architectures with formalized knowledge representations can make sophisticated legal reasoning more accessible through computationally efficient models while enhancing consistency and explainability in AI legal reasoning, establishing a foundation for future research into more transparent, trustworthy, and effective AI systems for legal domain.