Archives AI News

A stability theorem for bigraded persistence barcodes

arXiv:2303.14694v3 Announce Type: replace-cross Abstract: We define bigraded persistent homology modules and bigraded barcodes of a finite pseudo-metric space X using the ordinary and double homology of the moment-angle complex associated with the Vietoris-Rips filtration of X. We prove a stability theorem for the bigraded persistent double homology modules and barcodes.

Offline vs. Online Learning in Model-based RL: Lessons for Data Collection Strategies

arXiv:2509.05735v1 Announce Type: new Abstract: Data collection is crucial for learning robust world models in model-based reinforcement learning. The most prevalent strategies are to actively collect trajectories by interacting with the environment during online training or training on offline datasets. At first glance, the nature of learning task-agnostic environment dynamics makes world models a good candidate for effective offline training. However, the effects of online vs. offline data on world models and thus on the resulting task performance have not been thoroughly studied in the literature. In this work, we investigate both paradigms in model-based settings, conducting experiments on 31 different environments. First, we showcase that online agents outperform their offline counterparts. We identify a key challenge behind performance degradation of offline agents: encountering Out-Of-Distribution states at test time. This issue arises because, without the self-correction mechanism in online agents, offline datasets with limited state space coverage induce a mismatch between the agent's imagination and real rollouts, compromising policy training. We demonstrate that this issue can be mitigated by allowing for additional online interactions in a fixed or adaptive schedule, restoring the performance of online training with limited interaction data. We also showcase that incorporating exploration data helps mitigate the performance degradation of offline agents. Based on our insights, we recommend adding exploration data when collecting large datasets, as current efforts predominantly focus on expert data alone.

Effect of Random Learning Rate: Theoretical Analysis of SGD Dynamics in Non-Convex Optimization via Stationary Distribution

arXiv:2406.16032v2 Announce Type: replace-cross Abstract: We consider a variant of the stochastic gradient descent (SGD) with a random learning rate and reveal its convergence properties. SGD is a widely used stochastic optimization algorithm in machine learning, especially deep learning. Numerous studies reveal the convergence properties of SGD and its theoretically favorable variants. Among these, the analysis of convergence using a stationary distribution of updated parameters provides generalizable results. However, to obtain a stationary distribution, the update direction of the parameters must not degenerate, which limits the applicable variants of SGD. In this study, we consider a novel SGD variant, Poisson SGD, which has degenerated parameter update directions and instead utilizes a random learning rate. Consequently, we demonstrate that a distribution of a parameter updated by Poisson SGD converges to a stationary distribution under weak assumptions on a loss function. Based on this, we further show that Poisson SGD finds global minima in non-convex optimization problems and also evaluate the generalization error using this method. As a proof technique, we approximate the distribution by Poisson SGD with that of the bouncy particle sampler (BPS) and derive its stationary distribution, using the theoretical advance of the piece-wise deterministic Markov process (PDMP).

Privacy-Preserving Federated Learning via Homomorphic Adversarial Networks

arXiv:2412.01650v3 Announce Type: replace-cross Abstract: Privacy-preserving federated learning (PPFL) aims to train a global model for multiple clients while maintaining their data privacy. However, current PPFL protocols exhibit one or more of the following insufficiencies: considerable degradation in accuracy, the requirement for sharing keys, and cooperation during the key generation or decryption processes. As a mitigation, we develop the first protocol that utilizes neural networks to implement PPFL, as well as incorporating an Aggregatable Hybrid Encryption scheme tailored to the needs of PPFL. We name these networks as Homomorphic Adversarial Networks (HANs) which demonstrate that neural networks are capable of performing tasks similar to multi-key homomorphic encryption (MK-HE) while solving the problems of key distribution and collaborative decryption. Our experiments show that HANs are robust against privacy attacks. Compared with non-private federated learning, experiments conducted on multiple datasets demonstrate that HANs exhibit a negligible accuracy loss (at most 1.35%). Compared to traditional MK-HE schemes, HANs increase encryption aggregation speed by 6,075 times while incurring a 29.2 times increase in communication overhead.

Real-E: A Foundation Benchmark for Advancing Robust and Generalizable Electricity Forecasting

arXiv:2509.05768v1 Announce Type: new Abstract: Energy forecasting is vital for grid reliability and operational efficiency. Although recent advances in time series forecasting have led to progress, existing benchmarks remain limited in spatial and temporal scope and lack multi-energy features. This raises concerns about their reliability and applicability in real-world deployment. To address this, we present the Real-E dataset, covering over 74 power stations across 30+ European countries over a 10-year span with rich metadata. Using Real- E, we conduct an extensive data analysis and benchmark over 20 baselines across various model types. We introduce a new metric to quantify shifts in correlation structures and show that existing methods struggle on our dataset, which exhibits more complex and non-stationary correlation dynamics. Our findings highlight key limitations of current methods and offer a strong empirical basis for building more robust forecasting models

MM-Spatial: Exploring 3D Spatial Understanding in Multimodal LLMs

arXiv:2503.13111v2 Announce Type: replace-cross Abstract: Multimodal large language models (MLLMs) excel at 2D visual understanding but remain limited in their ability to reason about 3D space. In this work, we leverage large-scale high-quality 3D scene data with open-set annotations to introduce 1) a novel supervised fine-tuning dataset and 2) a new evaluation benchmark, focused on indoor scenes. Our Cubify Anything VQA (CA-VQA) data covers diverse spatial tasks including spatial relationship prediction, metric size and distance estimation, and 3D grounding. We show that CA-VQA enables us to train MM-Spatial, a strong generalist MLLM that also achieves state-of-the-art performance on 3D spatial understanding benchmarks, including our own. We show how incorporating metric depth and multi-view inputs (provided in CA-VQA) can further improve 3D understanding, and demonstrate that data alone allows our model to achieve depth perception capabilities comparable to dedicated monocular depth estimation models.

Robust Bandwidth Estimation for Real-Time Communication with Offline Reinforcement Learning

arXiv:2507.05785v3 Announce Type: replace-cross Abstract: Accurate bandwidth estimation (BWE) is critical for real-time communication (RTC) systems. Traditional heuristic approaches offer limited adaptability under dynamic networks, while online reinforcement learning (RL) suffers from high exploration costs and potential service disruptions. Offline RL, which leverages high-quality data collected from real-world environments, offers a promising alternative. However, challenges such as out-of-distribution (OOD) actions, policy extraction from behaviorally diverse datasets, and reliable deployment in production systems remain unsolved. We propose RBWE, a robust bandwidth estimation framework based on offline RL that integrates Q-ensemble (an ensemble of Q-functions) with a Gaussian mixture policy to mitigate OOD risks and enhance policy learning. A fallback mechanism ensures deployment stability by switching to heuristic methods under high uncertainty. Experimental results show that RBWE reduces overestimation errors by 18% and improves the 10th percentile Quality of Experience (QoE) by 18.6%, demonstrating its practical effectiveness in real-world RTC applications. The implementation is publicly available at https://github.com/jiu2021/RBWE_offline.

Select, then Balance: A Plug-and-Play Framework for Exogenous-Aware Spatio-Temporal Forecasting

arXiv:2509.05779v1 Announce Type: new Abstract: Spatio-temporal forecasting aims to predict the future state of dynamic systems and plays an important role in multiple fields. However, existing solutions only focus on modeling using a limited number of observed target variables. In real-world scenarios, exogenous variables can be integrated into the model as additional input features and associated with the target signal to promote forecast accuracy. Although promising, this still encounters two challenges: the inconsistent effects of different exogenous variables to the target system, and the imbalance effects between historical variables and future variables. To address these challenges, this paper introduces model, a novel framework for modeling underline{exo}genous variables in underline{s}patio-underline{t}emporal forecasting, which follows a ``select, then balance'' paradigm. Specifically, we first construct a latent space gated expert module, where fused exogenous information is projected into a latent space to dynamically select and recompose salient signals via specialized sub-experts. Furthermore, we design a siamese network architecture in which recomposed representations of past and future exogenous variables are fed into dual-branch spatio-temporal backbones to capture dynamic patterns. The outputs are integrated through a context-aware weighting mechanism to achieve dynamic balance during the modeling process. Extensive experiments on real-world datasets demonstrate the effectiveness, generality, robustness, and efficiency of our proposed framework.

Membership Inference Attacks on LLM-based Recommender Systems

arXiv:2508.18665v2 Announce Type: replace-cross Abstract: Large language models (LLMs) based Recommender Systems (RecSys) can flexibly adapt recommendation systems to different domains. It utilizes in-context learning (ICL), i.e., the prompts, to customize the recommendation functions, which include sensitive historical user-specific item interactions, e.g., implicit feedback like clicked items or explicit product reviews. Such private information may be exposed to novel privacy attack. However, no study has been done on this important issue. We design four membership inference attacks (MIAs), aiming to reveal whether victims' historical interactions have been used by system prompts. They are emph{direct inquiry, hallucination, similarity, and poisoning attacks}, each of which utilizes the unique features of LLMs or RecSys. We have carefully evaluated them on three LLMs that have been used to develop ICL-LLM RecSys and two well-known RecSys benchmark datasets. The results confirm that the MIA threat on LLM RecSys is realistic: direct inquiry and poisoning attacks showing significantly high attack advantages. We have also analyzed the factors affecting these attacks, such as the number of shots in system prompts and the position of the victim in the shots.

time2time: Causal Intervention in Hidden States to Simulate Rare Events in Time Series Foundation Models

arXiv:2509.05801v1 Announce Type: new Abstract: While transformer-based foundation models excel at forecasting routine patterns, two questions remain: do they internalize semantic concepts such as market regimes, or merely fit curves? And can their internal representations be leveraged to simulate rare, high-stakes events such as market crashes? To investigate this, we introduce activation transplantation, a causal intervention that manipulates hidden states by imposing the statistical moments of one event (e.g., a historical crash) onto another (e.g., a calm period) during the forward pass. This procedure deterministically steers forecasts: injecting crash semantics induces downturn predictions, while injecting calm semantics suppresses crashes and restores stability. Beyond binary control, we find that models encode a graded notion of event severity, with the latent vector norm directly correlating with the magnitude of systemic shocks. Validated across two architecturally distinct TSFMs, Toto (decoder only) and Chronos (encoder-decoder), our results demonstrate that steerable, semantically grounded representations are a robust property of large time series transformers. Our findings provide evidence for a latent concept space that governs model predictions, shifting interpretability from post-hoc attribution to direct causal intervention, and enabling semantic "what-if" analysis for strategic stress-testing.