Archives AI News

Prepared for the Worst: A Learning-Based Adversarial Attack for Resilience Analysis of the ICP Algorithm

arXiv:2403.05666v3 Announce Type: replace-cross Abstract: This paper presents a novel method for assessing the resilience of the ICP algorithm via learning-based, worst-case attacks on lidar point clouds. For safety-critical applications such as autonomous navigation, ensuring the resilience of algorithms before deployments is crucial. The ICP algorithm is the standard for lidar-based localization, but its accuracy can be greatly affected by corrupted measurements from various sources, including occlusions, adverse weather, or mechanical sensor issues. Unfortunately, the complex and iterative nature of ICP makes assessing its resilience to corruption challenging. While there have been efforts to create challenging datasets and develop simulations to evaluate the resilience of ICP, our method focuses on finding the maximum possible ICP error that can arise from corrupted measurements at a location. We demonstrate that our perturbation-based adversarial attacks can be used pre-deployment to identify locations on a map where ICP is particularly vulnerable to corruptions in the measurements. With such information, autonomous robots can take safer paths when deployed, to mitigate against their measurements being corrupted. The proposed attack outperforms baselines more than 88% of the time across a wide range of scenarios.

Fed-REACT: Federated Representation Learning for Heterogeneous and Evolving Data

arXiv:2509.07198v1 Announce Type: new Abstract: Motivated by the high resource costs and privacy concerns associated with centralized machine learning, federated learning (FL) has emerged as an efficient alternative that enables clients to collaboratively train a global model while keeping their data local. However, in real-world deployments, client data distributions often evolve over time and differ significantly across clients, introducing heterogeneity that degrades the performance of standard FL algorithms. In this work, we introduce Fed-REACT, a federated learning framework designed for heterogeneous and evolving client data. Fed-REACT combines representation learning with evolutionary clustering in a two-stage process: (1) in the first stage, each client learns a local model to extracts feature representations from its data; (2) in the second stage, the server dynamically groups clients into clusters based on these representations and coordinates cluster-wise training of task-specific models for downstream objectives such as classification or regression. We provide a theoretical analysis of the representation learning stage, and empirically demonstrate that Fed-REACT achieves superior accuracy and robustness on real-world datasets.

A Data-Free Analytical Quantization Scheme for Deep Learning Models

arXiv:2412.07391v3 Announce Type: replace-cross Abstract: Despite the success of CNN models on a variety of Image classification and segmentation tasks, their extensive computational and storage demands pose considerable challenges for real-world deployment on resource-constrained devices. Quantization is one technique that aims to alleviate these large storage requirements and speed up the inference process by reducing the precision of model parameters to lower-bit representations. In this paper, we introduce a novel post-training quantization method for model weights. Our method finds optimal clipping thresholds and scaling factors along with mathematical guarantees that our method minimizes quantization noise. Empirical results on real-world datasets demonstrate that our quantization scheme significantly reduces model size and computational requirements while preserving model accuracy.

Predicting effect of novel treatments using molecular pathways and real-world data

arXiv:2509.07204v1 Announce Type: new Abstract: In pharmaceutical R&D, predicting the efficacy of a pharmaceutical in treating a particular disease prior to clinical testing or any real-world use has been challenging. In this paper, we propose a flexible and modular machine learning-based approach for predicting the efficacy of an untested pharmaceutical for treating a disease. We train a machine learning model using sets of pharmaceutical-pathway weight impact scores and patient data, which can include patient characteristics and observed clinical outcomes. The resulting model then analyses weighted impact scores of an untested pharmaceutical across human biological molecule-protein pathways to generate a predicted efficacy value. We demonstrate how the method works on a real-world dataset with patient treatments and outcomes, with two different weight impact score algorithms We include methods for evaluating the generalisation performance on unseen treatments, and to characterise conditions under which the approach can be expected to be most predictive. We discuss specific ways in which our approach can be iterated on, making it an initial framework to support future work on predicting the effect of untested drugs, leveraging RWD clinical data and drug embeddings.

Local Normalization Distortion and the Thermodynamic Formalism of Decoding Strategies for Large Language Models

arXiv:2503.21929v2 Announce Type: replace-cross Abstract: Advances in hardware and language model architecture have spurred a revolution in natural language generation. However, autoregressive models compute probability distributions over next-token choices, and sampling from these distributions, known as decoding, has received significantly less attention than other design choices. Existing decoding strategies are largely based on heuristics, resulting in methods that are difficult to apply or improve in a principled manner. We develop the theory of decoding strategies for language models by expressing popular decoding algorithms as equilibrium states in the language of ergodic theory and stating the objective functions they optimize. Using this, we analyze the effect of the local normalization step required to make probabilities sum to one in top-k, nucleus, and temperature sampling. We argue that local normalization distortion is a fundamental defect of decoding strategies and quantify the size of this distortion and its effect on mathematical proxies for the quality and diversity of generated text. This yields conclusions for the design of decoding algorithms and the detection of machine-generated text.

Explaining How Quantization Disparately Skews a Model

arXiv:2509.07222v1 Announce Type: new Abstract: Post Training Quantization (PTQ) is widely adopted due to its high compression capacity and speed with minimal impact on accuracy. However, we observed that disparate impacts are exacerbated by quantization, especially for minority groups. Our analysis explains that in the course of quantization there is a chain of factors attributed to a disparate impact across groups during forward and backward passes. We explore how the changes in weights and activations induced by quantization cause cascaded impacts in the network, resulting in logits with lower variance, increased loss, and compromised group accuracies. We extend our study to verify the influence of these impacts on group gradient norms and eigenvalues of the Hessian matrix, providing insights into the state of the network from an optimization point of view. To mitigate these effects, we propose integrating mixed precision Quantization Aware Training (QAT) with dataset sampling methods and weighted loss functions, therefore providing fair deployment of quantized neural networks.

Towards Visuospatial Cognition via Hierarchical Fusion of Visual Experts

arXiv:2505.12363v4 Announce Type: replace-cross Abstract: While Multimodal Large Language Models (MLLMs) excel at general vision-language tasks, visuospatial cognition - reasoning about spatial layouts, relations, and dynamics - remains a significant challenge. Existing models often lack the necessary architectural components and specialized training data for fine-grained spatial understanding. We introduce ViCA2 (Visuospatial Cognitive Assistant 2), a novel MLLM designed to enhance spatial reasoning. ViCA2 features a dual vision encoder architecture integrating SigLIP for semantics and Hiera for spatial structure, coupled with a token ratio control mechanism for efficiency. We also developed ViCA-322K, a new large-scale dataset with over 322,000 spatially grounded question-answer pairs for targeted instruction tuning. On the challenging VSI-Bench benchmark, our ViCA2-7B model achieves a state-of-the-art average score of 56.8, significantly surpassing larger open-source models (e.g., LLaVA-NeXT-Video-72B, 40.9) and leading proprietary models (Gemini-1.5 Pro, 45.4). This demonstrates the effectiveness of our approach in achieving strong visuospatial intelligence with a compact model. We release ViCA2, its codebase, and the ViCA-322K dataset to facilitate further research.

Systematic Optimization of Open Source Large Language Models for Mathematical Reasoning

arXiv:2509.07238v1 Announce Type: new Abstract: This paper presents a practical investigation into fine-tuning model parameters for mathematical reasoning tasks through experimenting with various configurations including randomness control, reasoning depth, and sampling strategies, careful tuning demonstrates substantial improvements in efficiency as well as performance. A holistically optimized framework is introduced for five state-of-the-art models on mathematical reasoning tasks, exhibiting significant performance boosts while maintaining solution correctness. Through systematic parameter optimization across Qwen2.5-72B, Llama-3.1-70B, DeepSeek-V3, Mixtral-8x22B, and Yi-Lightning, consistent efficiency gains are demonstrated with 100% optimization success rate. The methodology achieves an average 29.4% reduction in computational cost and 23.9% improvement in inference speed across all tested models. This framework systematically searches parameter spaces including temperature (0.1-0.5), reasoning steps (4-12), planning periods (1-4), and nucleus sampling (0.85-0.98), determining optimal configurations through testing on mathematical reasoning benchmarks. Critical findings show that lower temperature regimes (0.1-0.4) and reduced reasoning steps (4-6) consistently enhance efficiency without compromising accuracy. DeepSeek-V3 achieves the highest accuracy at 98%, while Mixtral-8x22B delivers the most cost-effective performance at 361.5 tokens per accurate response. Key contributions include: (1) the first comprehensive optimization study for five diverse SOTA models in mathematical reasoning, (2) a standardized production-oriented parameter optimization framework, (3) discovery of universal optimization trends applicable across model architectures, and (4) production-ready configurations with extensive performance characterization.

Convergence of Momentum-Based Optimization Algorithms with Time-Varying Parameters

arXiv:2506.11904v2 Announce Type: replace-cross Abstract: In this paper, we present a unified algorithm for stochastic optimization that makes use of a "momentum" term; in other words, the stochastic gradient depends not only on the current true gradient of the objective function, but also on the true gradient at the previous iteration. Our formulation includes the Stochastic Heavy Ball (SHB) and the Stochastic Nesterov Accelerated Gradient (SNAG) algorithms as special cases. In addition, in our formulation, the momentum term is allowed to vary as a function of time (i.e., the iteration counter). The assumptions on the stochastic gradient are the most general in the literature, in that it can be biased, and have a conditional variance that grows in an unbounded fashion as a function of time. This last feature is crucial in order to make the theory applicable to "zero-order" methods, where the gradient is estimated using just two function evaluations. We present a set of sufficient conditions for the convergence of the unified algorithm. These conditions are natural generalizations of the familiar Robbins-Monro and Kiefer-Wolfowitz-Blum conditions for standard stochastic gradient descent. We also analyze another method from the literature for the SHB algorithm with a time-varying momentum parameter, and show that it is impracticable.

IP-Basis PINNs: Efficient Multi-Query Inverse Parameter Estimation

arXiv:2509.07245v1 Announce Type: new Abstract: Solving inverse problems with Physics-Informed Neural Networks (PINNs) is computationally expensive for multi-query scenarios, as each new set of observed data requires a new, expensive training procedure. We present Inverse-Parameter Basis PINNs (IP-Basis PINNs), a meta-learning framework that extends the foundational work of Desai et al. (2022) to enable rapid and efficient inference for inverse problems. Our method employs an offline-online decomposition: a deep network is first trained offline to produce a rich set of basis functions that span the solution space of a parametric differential equation. For each new inverse problem online, this network is frozen, and solutions and parameters are inferred by training only a lightweight linear output layer against observed data. Key innovations that make our approach effective for inverse problems include: (1) a novel online loss formulation for simultaneous solution reconstruction and parameter identification, (2) a significant reduction in computational overhead via forward-mode automatic differentiation for PDE loss evaluation, and (3) a non-trivial validation and early-stopping mechanism for robust offline training. We demonstrate the efficacy of IP-Basis PINNs on three diverse benchmarks, including an extension to universal PINNs for unknown functional terms-showing consistent performance across constant and functional parameter estimation, a significant speedup per query over standard PINNs, and robust operation with scarce and noisy data.