Archives AI News

Orientability of Causal Relations in Time Series using Summary Causal Graphs and Faithful Distributions

arXiv:2508.21742v1 Announce Type: new Abstract: Understanding causal relations between temporal variables is a central challenge in time series analysis, particularly when the full causal structure is unknown. Even when the full causal structure cannot be fully specified, experts often succeed in providing a high-level abstraction of the causal graph, known as a summary causal graph, which captures the main causal relations between different time series while abstracting away micro-level details. In this work, we present conditions that guarantee the orientability of micro-level edges between temporal variables given the background knowledge encoded in a summary causal graph and assuming having access to a faithful and causally sufficient distribution with respect to the true unknown graph. Our results provide theoretical guarantees for edge orientation at the micro-level, even in the presence of cycles or bidirected edges at the macro-level. These findings offer practical guidance for leveraging SCGs to inform causal discovery in complex temporal systems and highlight the value of incorporating expert knowledge to improve causal inference from observational time series data.

CE-RS-SBCIT A Novel Channel Enhanced Hybrid CNN Transformer with Residual, Spatial, and Boundary-Aware Learning for Brain Tumor MRI Analysis

arXiv:2508.17128v2 Announce Type: replace-cross Abstract: Brain tumors remain among the most lethal human diseases, where early detection and accurate classification are critical for effective diagnosis and treatment planning. Although deep learning-based computer-aided diagnostic (CADx) systems have shown remarkable progress. However, conventional convolutional neural networks (CNNs) and Transformers face persistent challenges, including high computational cost, sensitivity to minor contrast variations, structural heterogeneity, and texture inconsistencies in MRI data. Therefore, a novel hybrid framework, CE-RS-SBCIT, is introduced, integrating residual and spatial learning-based CNNs with transformer-driven modules. The proposed framework exploits local fine-grained and global contextual cues through four core innovations: (i) a smoothing and boundary-based CNN-integrated Transformer (SBCIT), (ii) tailored residual and spatial learning CNNs, (iii) a channel enhancement (CE) strategy, and (iv) a novel spatial attention mechanism. The developed SBCIT employs stem convolution and contextual interaction transformer blocks with systematic smoothing and boundary operations, enabling efficient global feature modeling. Moreover, Residual and spatial CNNs, enhanced by auxiliary transfer-learned feature maps, enrich the representation space, while the CE module amplifies discriminative channels and mitigates redundancy. Furthermore, the spatial attention mechanism selectively emphasizes subtle contrast and textural variations across tumor classes. Extensive evaluation on challenging MRI datasets from Kaggle and Figshare, encompassing glioma, meningioma, pituitary tumors, and healthy controls, demonstrates superior performance, achieving 98.30% accuracy, 98.08% sensitivity, 98.25% F1-score, and 98.43% precision.

Tree-Guided Diffusion Planner

arXiv:2508.21800v1 Announce Type: new Abstract: Planning with pretrained diffusion models has emerged as a promising approach for solving test-time guided control problems. However, standard gradient guidance typically performs optimally under convex and differentiable reward landscapes, showing substantially reduced effectiveness in real-world scenarios involving non-convex objectives, non-differentiable constraints, and multi-reward structures. Furthermore, recent supervised planning approaches require task-specific training or value estimators, which limits test-time flexibility and zero-shot generalization. We propose a Tree-guided Diffusion Planner (TDP), a zero-shot test-time planning framework that balances exploration and exploitation through structured trajectory generation. We frame test-time planning as a tree search problem using a bi-level sampling process: (1) diverse parent trajectories are produced via training-free particle guidance to encourage broad exploration, and (2) sub-trajectories are refined through fast conditional denoising guided by task objectives. TDP addresses the limitations of gradient guidance by exploring diverse trajectory regions and harnessing gradient information across this expanded solution space using only pretrained models and test-time reward signals. We evaluate TDP on three diverse tasks: maze gold-picking, robot arm block manipulation, and AntMaze multi-goal exploration. TDP consistently outperforms state-of-the-art approaches on all tasks. The project page can be found at: tree-diffusion-planner.github.io.

Complete Gaussian Splats from a Single Image with Denoising Diffusion Models

arXiv:2508.21542v1 Announce Type: cross Abstract: Gaussian splatting typically requires dense observations of the scene and can fail to reconstruct occluded and unobserved areas. We propose a latent diffusion model to reconstruct a complete 3D scene with Gaussian splats, including the occluded parts, from only a single image during inference. Completing the unobserved surfaces of a scene is challenging due to the ambiguity of the plausible surfaces. Conventional methods use a regression-based formulation to predict a single "mode" for occluded and out-of-frustum surfaces, leading to blurriness, implausibility, and failure to capture multiple possible explanations. Thus, they often address this problem partially, focusing either on objects isolated from the background, reconstructing only visible surfaces, or failing to extrapolate far from the input views. In contrast, we propose a generative formulation to learn a distribution of 3D representations of Gaussian splats conditioned on a single input image. To address the lack of ground-truth training data, we propose a Variational AutoReconstructor to learn a latent space only from 2D images in a self-supervised manner, over which a diffusion model is trained. Our method generates faithful reconstructions and diverse samples with the ability to complete the occluded surfaces for high-quality 360-degree renderings.

Time-RA: Towards Time Series Reasoning for Anomaly with LLM Feedback

arXiv:2507.15066v3 Announce Type: replace Abstract: Time series anomaly detection is critical across various domains, yet current approaches often limit analysis to mere binary anomaly classification without detailed categorization or further explanatory reasoning. To address these limitations, we propose a novel task, Time-series Reasoning for Anomaly (Time-RA) that transforms classical time series anomaly detection from a discriminative into a generative, reasoning-intensive task leveraging Large Language Models (LLMs). Also, we introduce the first real-world multimodal benchmark dataset, RATs40K, explicitly annotated for anomaly reasoning, comprising approximately 40,000 samples across 10 real-world domains. Each sample includes numeric time series data, contextual text information, and visual representations, each annotated with fine-grained categories (14 types for univariate anomalies and 6 for multivariate anomalies) and structured explanatory reasoning. We develop a sophisticated annotation framework utilizing ensemble-generated labels refined through GPT-4-driven feedback, ensuring accuracy and interpretability. Extensive benchmarking of LLMs and multimodal LLMs demonstrates the capabilities and limitations of current models, highlighting the critical role of supervised fine-tuning. Our dataset and task pave the way for significant advancements in interpretable time series anomaly detection and reasoning. The code (https://github.com/yyysjz1997/Time-RA) and dataset (https://huggingface.co/datasets/Time-RA/RATs40K) have been fully open-sourced to support and accelerate future research in this area.

Federated Diffusion Modeling with Differential Privacy for Tabular Data Synthesis

arXiv:2412.16083v2 Announce Type: replace Abstract: The increasing demand for privacy-preserving data analytics in various domains necessitates solutions for synthetic data generation that rigorously uphold privacy standards. We introduce the DP-FedTabDiff framework, a novel integration of Differential Privacy, Federated Learning and Denoising Diffusion Probabilistic Models designed to generate high-fidelity synthetic tabular data. This framework ensures compliance with privacy regulations while maintaining data utility. We demonstrate the effectiveness of DP-FedTabDiff on multiple real-world mixed-type tabular datasets, achieving significant improvements in privacy guarantees without compromising data quality. Our empirical evaluations reveal the optimal trade-offs between privacy budgets, client configurations, and federated optimization strategies. The results affirm the potential of DP-FedTabDiff to enable secure data sharing and analytics in highly regulated domains, paving the way for further advances in federated learning and privacy-preserving data synthesis.

Merging and Disentangling Views in Visual Reinforcement Learning for Robotic Manipulation

arXiv:2505.04619v2 Announce Type: replace Abstract: Vision is well-known for its use in manipulation, especially using visual servoing. Due to the 3D nature of the world, using multiple camera views and merging them creates better representations for Q-learning and in turn, trains more sample efficient policies. Nevertheless, these multi-view policies are sensitive to failing cameras and can be burdensome to deploy. To mitigate these issues, we introduce a Merge And Disentanglement (MAD) algorithm that efficiently merges views to increase sample efficiency while simultaneously disentangling views by augmenting multi-view feature inputs with single-view features. This produces robust policies and allows lightweight deployment. We demonstrate the efficiency and robustness of our approach using Meta-World and ManiSkill3. For project website and code, see https://aalmuzairee.github.io/mad

Why Stop at Words? Unveiling the Bigger Picture through Line-Level OCR

arXiv:2508.21693v1 Announce Type: cross Abstract: Conventional optical character recognition (OCR) techniques segmented each character and then recognized. This made them prone to error in character segmentation, and devoid of context to exploit language models. Advances in sequence to sequence translation in last decade led to modern techniques first detecting words and then inputting one word at a time to a model to directly output full words as sequence of characters. This allowed better utilization of language models and bypass error-prone character segmentation step. We observe that the above transition in style has moved the bottleneck in accuracy to word segmentation. Hence, in this paper, we propose a natural and logical progression from word level OCR to line-level OCR. The proposal allows to bypass errors in word detection, and provides larger sentence context for better utilization of language models. We show that the proposed technique not only improves the accuracy but also efficiency of OCR. Despite our thorough literature survey, we did not find any public dataset to train and benchmark such shift from word to line-level OCR. Hence, we also contribute a meticulously curated dataset of 251 English page images with line-level annotations. Our experimentation revealed a notable end-to-end accuracy improvement of 5.4%, underscoring the potential benefits of transitioning towards line-level OCR, especially for document images. We also report a 4 times improvement in efficiency compared to word-based pipelines. With continuous improvements in large language models, our methodology also holds potential to exploit such advances. Project Website: https://nishitanand.github.io/line-level-ocr-website

Survey of Privacy Threats and Countermeasures in Federated Learning

arXiv:2402.00342v2 Announce Type: replace Abstract: Federated learning is widely considered to be as a privacy-aware learning method because no training data is exchanged directly between clients. Nevertheless, there are threats to privacy in federated learning, and privacy countermeasures have been studied. However, we note that common and unique privacy threats among typical types of federated learning have not been categorized and described in a comprehensive and specific way. In this paper, we describe privacy threats and countermeasures for the typical types of federated learning; horizontal federated learning, vertical federated learning, and transfer federated learning.

Towards Understanding Camera Motions in Any Video

arXiv:2504.15376v2 Announce Type: replace-cross Abstract: We introduce CameraBench, a large-scale dataset and benchmark designed to assess and improve camera motion understanding. CameraBench consists of ~3,000 diverse internet videos, annotated by experts through a rigorous multi-stage quality control process. One of our contributions is a taxonomy of camera motion primitives, designed in collaboration with cinematographers. We find, for example, that some motions like "follow" (or tracking) require understanding scene content like moving subjects. We conduct a large-scale human study to quantify human annotation performance, revealing that domain expertise and tutorial-based training can significantly enhance accuracy. For example, a novice may confuse zoom-in (a change of intrinsics) with translating forward (a change of extrinsics), but can be trained to differentiate the two. Using CameraBench, we evaluate Structure-from-Motion (SfM) and Video-Language Models (VLMs), finding that SfM models struggle to capture semantic primitives that depend on scene content, while VLMs struggle to capture geometric primitives that require precise estimation of trajectories. We then fine-tune a generative VLM on CameraBench to achieve the best of both worlds and showcase its applications, including motion-augmented captioning, video question answering, and video-text retrieval. We hope our taxonomy, benchmark, and tutorials will drive future efforts towards the ultimate goal of understanding camera motions in any video.