Archives AI News

Morphological Perceptron with Competitive Layer: Training Using Convex-Concave Procedure

arXiv:2509.05697v1 Announce Type: new Abstract: A morphological perceptron is a multilayer feedforward neural network in which neurons perform elementary operations from mathematical morphology. For multiclass classification tasks, a morphological perceptron with a competitive layer (MPCL) is obtained by integrating a winner-take-all output layer into the standard morphological architecture. The non-differentiability of morphological operators renders gradient-based optimization methods unsuitable for training such networks. Consequently, alternative strategies that do not depend on gradient information are commonly adopted. This paper proposes the use of the convex-concave procedure (CCP) for training MPCL networks. The training problem is formulated as a difference of convex (DC) functions and solved iteratively using CCP, resulting in a sequence of linear programming subproblems. Computational experiments demonstrate the effectiveness of the proposed training method in addressing classification tasks with MPCL networks.

Risk-averse Fair Multi-class Classification

arXiv:2509.05771v1 Announce Type: new Abstract: We develop a new classification framework based on the theory of coherent risk measures and systemic risk. The proposed approach is suitable for multi-class problems when the data is noisy, scarce (relative to the dimension of the problem), and the labeling might be unreliable. In the first part of our paper, we provide the foundation of the use of systemic risk models and show how to apply it in the context of linear and kernel-based multi-class problems. More advanced formulation via a system-theoretic approach with non-linear aggregation is proposed, which leads to a two-stage stochastic programming problem. A risk-averse regularized decomposition method is designed to solve the problem. We use a popular multi-class method as a benchmark in the performance analysis of the proposed classification methods. We illustrate our ideas by proposing several generalization of that method by the use of coherent measures of risk. The viability of the proposed risk-averse methods are supported theoretically and numerically. Additionally, we demonstrate that the application of systemic risk measures facilitates enforcing fairness in classification. Analysis and experiments regarding the fairness of the proposed models are carefully conducted. For all methods, our numerical experiments demonstrate that they are robust in the presence of unreliable training data and perform better on unknown data than the methods minimizing expected classification errors. Furthermore, the performance improves when the number of classes increases.

GenAI-Powered Inference

arXiv:2507.03897v2 Announce Type: replace-cross Abstract: We introduce GenAI-Powered Inference (GPI), a statistical framework for both causal and predictive inference using unstructured data, including text and images. GPI leverages open-source Generative Artificial Intelligence (GenAI) models -- such as large language models and diffusion models -- not only to generate unstructured data at scale but also to extract low-dimensional representations that are guaranteed to capture their underlying structure. Applying machine learning to these representations, GPI enables estimation of causal and predictive effects while quantifying associated estimation uncertainty. Unlike existing approaches to representation learning, GPI does not require fine-tuning of generative models, making it computationally efficient and broadly accessible. We illustrate the versatility of the GPI framework through three applications: (1) analyzing Chinese social media censorship, (2) estimating predictive effects of candidates' facial appearance on electoral outcomes, and (3) assessing the persuasiveness of political rhetoric. An open-source software package is available for implementing GPI.

Minimax optimal transfer learning for high-dimensional additive regression

arXiv:2509.06308v1 Announce Type: new Abstract: This paper studies high-dimensional additive regression under the transfer learning framework, where one observes samples from a target population together with auxiliary samples from different but potentially related regression models. We first introduce a target-only estimation procedure based on the smooth backfitting estimator with local linear smoothing. In contrast to previous work, we establish general error bounds under sub-Weibull($alpha$) noise, thereby accommodating heavy-tailed error distributions. In the sub-exponential case ($alpha=1$), we show that the estimator attains the minimax lower bound under regularity conditions, which requires a substantial departure from existing proof strategies. We then develop a novel two-stage estimation method within a transfer learning framework, and provide theoretical guarantees at both the population and empirical levels. Error bounds are derived for each stage under general tail conditions, and we further demonstrate that the minimax optimal rate is achieved when the auxiliary and target distributions are sufficiently close. All theoretical results are supported by simulation studies and real data analysis.

Convergence and Generalization of Anti-Regularization for Parametric Models

arXiv:2508.17412v2 Announce Type: replace-cross Abstract: Anti-regularization introduces a reward term with a reversed sign into the loss function, deliberately amplifying model expressivity in small-sample regimes while ensuring that the intervention gradually vanishes as the sample size grows through a power-law decay schedule. We formalize spectral safety conditions and trust-region constraints, and we design a lightweight safeguard that combines a projection operator with gradient clipping to guarantee stable intervention. Theoretical analysis extends to linear smoothers and the Neural Tangent Kernel regime, providing practical guidance on the choice of decay exponents through the balance between empirical risk and variance. Empirical results show that Anti-regularization mitigates underfitting in both regression and classification while preserving generalization and improving calibration. Ablation studies confirm that the decay schedule and safeguards are essential to avoiding overfitting and instability. As an alternative, we also propose a degrees-of-freedom targeting schedule that maintains constant per-sample complexity. Anti-regularization constitutes a simple and reproducible procedure that integrates seamlessly into standard empirical risk minimization pipelines, enabling robust learning under limited data and resource constraints by intervening only when necessary and vanishing otherwise.

Robust and Adaptive Spectral Method for Representation Multi-Task Learning with Contamination

arXiv:2509.06575v1 Announce Type: new Abstract: Representation-based multi-task learning (MTL) improves efficiency by learning a shared structure across tasks, but its practical application is often hindered by contamination, outliers, or adversarial tasks. Most existing methods and theories assume a clean or near-clean setting, failing when contamination is significant. This paper tackles representation MTL with an unknown and potentially large contamination proportion, while also allowing for heterogeneity among inlier tasks. We introduce a Robust and Adaptive Spectral method (RAS) that can distill the shared inlier representation effectively and efficiently, while requiring no prior knowledge of the contamination level or the true representation dimension. Theoretically, we provide non-asymptotic error bounds for both the learned representation and the per-task parameters. These bounds adapt to inlier task similarity and outlier structure, and guarantee that RAS performs at least as well as single-task learning, thus preventing negative transfer. We also extend our framework to transfer learning with corresponding theoretical guarantees for the target task. Extensive experiments confirm our theory, showcasing the robustness and adaptivity of RAS, and its superior performance in regimes with up to 80% task contamination.

Limit Theorems for Stochastic Gradient Descent with Infinite Variance

arXiv:2410.16340v4 Announce Type: replace Abstract: Stochastic gradient descent is a classic algorithm that has gained great popularity especially in the last decades as the most common approach for training models in machine learning. While the algorithm has been well-studied when stochastic gradients are assumed to have a finite variance, there is significantly less research addressing its theoretical properties in the case of infinite variance gradients. In this paper, we establish the asymptotic behavior of stochastic gradient descent in the context of infinite variance stochastic gradients, assuming that the stochastic gradient is regular varying with index $alphain(1,2)$. The closest result in this context was established in 1969 , in the one-dimensional case and assuming that stochastic gradients belong to a more restrictive class of distributions. We extend it to the multidimensional case, covering a broader class of infinite variance distributions. As we show, the asymptotic distribution of the stochastic gradient descent algorithm can be characterized as the stationary distribution of a suitably defined Ornstein-Uhlenbeck process driven by an appropriate stable L'evy process. Additionally, we explore the applications of these results in linear regression and logistic regression models.

Automated Hierarchical Graph Construction for Multi-source Electronic Health Records

arXiv:2509.06576v1 Announce Type: new Abstract: Electronic Health Records (EHRs), comprising diverse clinical data such as diagnoses, medications, and laboratory results, hold great promise for translational research. EHR-derived data have advanced disease prevention, improved clinical trial recruitment, and generated real-world evidence. Synthesizing EHRs across institutions enables large-scale, generalizable studies that capture rare diseases and population diversity, but remains hindered by the heterogeneity of medical codes, institution-specific terminologies, and the absence of standardized data structures. These barriers limit the interpretability, comparability, and scalability of EHR-based analyses, underscoring the need for robust methods to harmonize and extract meaningful insights from distributed, heterogeneous data. To address this, we propose MASH (Multi-source Automated Structured Hierarchy), a fully automated framework that aligns medical codes across institutions using neural optimal transport and constructs hierarchical graphs with learned hyperbolic embeddings. During training, MASH integrates information from pre-trained language models, co-occurrence patterns, textual descriptions, and supervised labels to capture semantic and hierarchical relationships among medical concepts more effectively. Applied to real-world EHR data, including diagnosis, medication, and laboratory codes, MASH produces interpretable hierarchical graphs that facilitate the navigation and understanding of heterogeneous clinical data. Notably, it generates the first automated hierarchies for unstructured local laboratory codes, establishing foundational references for downstream applications.

KD$^{2}$M: A unifying framework for feature knowledge distillation

arXiv:2504.01757v3 Announce Type: replace Abstract: Knowledge Distillation (KD) seeks to transfer the knowledge of a teacher, towards a student neural net. This process is often done by matching the networks' predictions (i.e., their output), but, recently several works have proposed to match the distributions of neural nets' activations (i.e., their features), a process known as emph{distribution matching}. In this paper, we propose an unifying framework, Knowledge Distillation through Distribution Matching (KD$^{2}$M), which formalizes this strategy. Our contributions are threefold. We i) provide an overview of distribution metrics used in distribution matching, ii) benchmark on computer vision datasets, and iii) derive new theoretical results for KD.

Sequential Least-Squares Estimators with Fast Randomized Sketching for Linear Statistical Models

arXiv:2509.06856v1 Announce Type: new Abstract: We propose a novel randomized framework for the estimation problem of large-scale linear statistical models, namely Sequential Least-Squares Estimators with Fast Randomized Sketching (SLSE-FRS), which integrates Sketch-and-Solve and Iterative-Sketching methods for the first time. By iteratively constructing and solving sketched least-squares (LS) subproblems with increasing sketch sizes to achieve better precisions, SLSE-FRS gradually refines the estimators of the true parameter vector, ultimately producing high-precision estimators. We analyze the convergence properties of SLSE-FRS, and provide its efficient implementation. Numerical experiments show that SLSE-FRS outperforms the state-of-the-art methods, namely the Preconditioned Conjugate Gradient (PCG) method, and the Iterative Double Sketching (IDS) method.