Archives AI News

ProfilingAgent: Profiling-Guided Agentic Reasoning for Adaptive Model Optimization

arXiv:2509.05584v1 Announce Type: new Abstract: Foundation models face growing compute and memory bottlenecks, hindering deployment on resource-limited platforms. While compression techniques such as pruning and quantization are widely used, most rely on uniform heuristics that ignore architectural and runtime heterogeneity. Profiling tools expose per-layer latency, memory, and compute cost, yet are rarely integrated into automated pipelines. We propose ProfilingAgent, a profiling-guided, agentic approach that uses large language models (LLMs) to automate compression via structured pruning and post-training dynamic quantization. Our modular multi-agent system reasons over static metrics (MACs, parameter counts) and dynamic signals (latency, memory) to design architecture-specific strategies. Unlike heuristic baselines, ProfilingAgent tailors layer-wise decisions to bottlenecks. Experiments on ImageNet-1K, CIFAR-10, and CIFAR-100 with ResNet-101, ViT-B/16, Swin-B, and DeiT-B/16 show pruning maintains competitive or improved accuracy (about 1% drop on ImageNet-1K, +2% gains for ViT-B/16 on smaller datasets), while quantization achieves up to 74% memory savings with <0.5% accuracy loss. Our quantization also yields consistent inference speedups of up to 1.74 times faster. Comparative studies with GPT-4o and GPT-4-Turbo highlight the importance of LLM reasoning quality for iterative pruning. These results establish agentic systems as scalable solutions for profiling-guided model optimization.

Causal Debiasing Medical Multimodal Representation Learning with Missing Modalities

arXiv:2509.05615v1 Announce Type: new Abstract: Medical multimodal representation learning aims to integrate heterogeneous clinical data into unified patient representations to support predictive modeling, which remains an essential yet challenging task in the medical data mining community. However, real-world medical datasets often suffer from missing modalities due to cost, protocol, or patient-specific constraints. Existing methods primarily address this issue by learning from the available observations in either the raw data space or feature space, but typically neglect the underlying bias introduced by the data acquisition process itself. In this work, we identify two types of biases that hinder model generalization: missingness bias, which results from non-random patterns in modality availability, and distribution bias, which arises from latent confounders that influence both observed features and outcomes. To address these challenges, we perform a structural causal analysis of the data-generating process and propose a unified framework that is compatible with existing direct prediction-based multimodal learning methods. Our method consists of two key components: (1) a missingness deconfounding module that approximates causal intervention based on backdoor adjustment and (2) a dual-branch neural network that explicitly disentangles causal features from spurious correlations. We evaluated our method in real-world public and in-hospital datasets, demonstrating its effectiveness and causal insights.

Imitative Membership Inference Attack

arXiv:2509.06796v1 Announce Type: cross Abstract: A Membership Inference Attack (MIA) assesses how much a target machine learning model reveals about its training data by determining whether specific query instances were part of the training set. State-of-the-art MIAs rely on training hundreds of shadow models that are independent of the target model, leading to significant computational overhead. In this paper, we introduce Imitative Membership Inference Attack (IMIA), which employs a novel imitative training technique to strategically construct a small number of target-informed imitative models that closely replicate the target model's behavior for inference. Extensive experimental results demonstrate that IMIA substantially outperforms existing MIAs in various attack settings while only requiring less than 5% of the computational cost of state-of-the-art approaches.

OptiProxy-NAS: Optimization Proxy based End-to-End Neural Architecture Search

arXiv:2509.05656v1 Announce Type: new Abstract: Neural architecture search (NAS) is a hard computationally expensive optimization problem with a discrete, vast, and spiky search space. One of the key research efforts dedicated to this space focuses on accelerating NAS via certain proxy evaluations of neural architectures. Different from the prevalent predictor-based methods using surrogate models and differentiable architecture search via supernetworks, we propose an optimization proxy to streamline the NAS as an end-to-end optimization framework, named OptiProxy-NAS. In particular, using a proxy representation, the NAS space is reformulated to be continuous, differentiable, and smooth. Thereby, any differentiable optimization method can be applied to the gradient-based search of the relaxed architecture parameters. Our comprehensive experiments on $12$ NAS tasks of $4$ search spaces across three different domains including computer vision, natural language processing, and resource-constrained NAS fully demonstrate the superior search results and efficiency. Further experiments on low-fidelity scenarios verify the flexibility.

Paper2Agent: Reimagining Research Papers As Interactive and Reliable AI Agents

arXiv:2509.06917v1 Announce Type: cross Abstract: We introduce Paper2Agent, an automated framework that converts research papers into AI agents. Paper2Agent transforms research output from passive artifacts into active systems that can accelerate downstream use, adoption, and discovery. Conventional research papers require readers to invest substantial effort to understand and adapt a paper's code, data, and methods to their own work, creating barriers to dissemination and reuse. Paper2Agent addresses this challenge by automatically converting a paper into an AI agent that acts as a knowledgeable research assistant. It systematically analyzes the paper and the associated codebase using multiple agents to construct a Model Context Protocol (MCP) server, then iteratively generates and runs tests to refine and robustify the resulting MCP. These paper MCPs can then be flexibly connected to a chat agent (e.g. Claude Code) to carry out complex scientific queries through natural language while invoking tools and workflows from the original paper. We demonstrate Paper2Agent's effectiveness in creating reliable and capable paper agents through in-depth case studies. Paper2Agent created an agent that leverages AlphaGenome to interpret genomic variants and agents based on ScanPy and TISSUE to carry out single-cell and spatial transcriptomics analyses. We validate that these paper agents can reproduce the original paper's results and can correctly carry out novel user queries. By turning static papers into dynamic, interactive AI agents, Paper2Agent introduces a new paradigm for knowledge dissemination and a foundation for the collaborative ecosystem of AI co-scientists.

DQS: A Low-Budget Query Strategy for Enhancing Unsupervised Data-driven Anomaly Detection Approaches

arXiv:2509.05663v1 Announce Type: new Abstract: Truly unsupervised approaches for time series anomaly detection are rare in the literature. Those that exist suffer from a poorly set threshold, which hampers detection performance, while others, despite claiming to be unsupervised, need to be calibrated using a labelled data subset, which is often not available in the real world. This work integrates active learning with an existing unsupervised anomaly detection method by selectively querying the labels of multivariate time series, which are then used to refine the threshold selection process. To achieve this, we introduce a novel query strategy called the dissimilarity-based query strategy (DQS). DQS aims to maximise the diversity of queried samples by evaluating the similarity between anomaly scores using dynamic time warping. We assess the detection performance of DQS in comparison to other query strategies and explore the impact of mislabelling, a topic that is underexplored in the literature. Our findings indicate that DQS performs best in small-budget scenarios, though the others appear to be more robust when faced with mislabelling. Therefore, in the real world, the choice of query strategy depends on the expertise of the oracle and the number of samples they are willing to label. Regardless, all query strategies outperform the unsupervised threshold even in the presence of mislabelling. Thus, whenever it is feasible to query an oracle, employing an active learning-based threshold is recommended.

Neural CRNs: A Natural Implementation of Learning in Chemical Reaction Networks

arXiv:2409.00034v4 Announce Type: replace Abstract: Molecular circuits capable of autonomous learning could unlock novel applications in fields such as bioengineering and synthetic biology. To this end, existing chemical implementations of neural computing have mainly relied on emulating discrete-layered neural architectures using steady-state computations of mass action kinetics. In contrast, we propose an alternative dynamical systems-based approach in which neural computations are modeled as the time evolution of molecular concentrations. The analog nature of our framework naturally aligns with chemical kinetics-based computation, leading to more compact circuits. We present the advantages of our framework through three key demonstrations. First, we assemble an end-to-end supervised learning pipeline using only two sequential phases, the minimum required number for supervised learning. Then, we show (through appropriate simplifications) that both linear and nonlinear modeling circuits can be implemented solely using unimolecular and bimolecular reactions, avoiding the complexities of higher-order chemistries. Finally, we demonstrate that first-order gradient approximations can be natively incorporated into the framework, enabling nonlinear models to scale linearly rather than combinatorially with input dimensionality. All the circuit constructions are validated through training and inference simulations across various regression and classification tasks. Our work presents a viable pathway toward embedding learning behaviors in synthetic biochemical systems.

Emergence of the Primacy Effect in Structured State-Space Models

arXiv:2502.13729v5 Announce Type: replace Abstract: Structured state-space models (SSMs) have been developed to offer more persistent memory retention than traditional recurrent neural networks, while maintaining real-time inference capabilities and addressing the time-complexity limitations of Transformers. Despite this intended persistence, the memory mechanism of canonical SSMs is theoretically designed to decay monotonically over time, meaning that more recent inputs are expected to be retained more accurately than earlier ones. Contrary to this theoretical expectation, however, the present study reveals a counterintuitive finding: when trained and evaluated on a synthetic, statistically balanced memorization task, SSMs predominantly preserve the *initially* presented data in memory. This pattern of memory bias, known as the *primacy effect* in psychology, presents a non-trivial challenge to the current theoretical understanding of SSMs and opens new avenues for future research.

Distributed Deep Learning using Stochastic Gradient Staleness

arXiv:2509.05679v1 Announce Type: new Abstract: Despite the notable success of deep neural networks (DNNs) in solving complex tasks, the training process still remains considerable challenges. A primary obstacle is the substantial time required for training, particularly as high performing DNNs tend to become increasingly deep (characterized by a larger number of hidden layers) and require extensive training datasets. To address these challenges, this paper introduces a distributed training method that integrates two prominent strategies for accelerating deep learning: data parallelism and fully decoupled parallel backpropagation algorithm. By utilizing multiple computational units operating in parallel, the proposed approach enhances the amount of training data processed in each iteration while mitigating locking issues commonly associated with the backpropagation algorithm. These features collectively contribute to significant improvements in training efficiency. The proposed distributed training method is rigorously proven to converge to critical points under certain conditions. Its effectiveness is further demonstrated through empirical evaluations, wherein an DNN is trained to perform classification tasks on the CIFAR-10 dataset.

Test-Time Scaling of Diffusion Models via Noise Trajectory Search

arXiv:2506.03164v2 Announce Type: replace Abstract: The iterative and stochastic nature of diffusion models enables test-time scaling, whereby spending additional compute during denoising generates higher-fidelity samples. Increasing the number of denoising steps is the primary scaling axis, but this yields quickly diminishing returns. Instead optimizing the noise trajectory--the sequence of injected noise vectors--is promising, as the specific noise realizations critically affect sample quality; but this is challenging due to a high-dimensional search space, complex noise-outcome interactions, and costly trajectory evaluations. We address this by first casting diffusion as a Markov Decision Process (MDP) with a terminal reward, showing tree-search methods such as Monte Carlo tree search (MCTS) to be meaningful but impractical. To balance performance and efficiency, we then resort to a relaxation of MDP, where we view denoising as a sequence of independent contextual bandits. This allows us to introduce an $epsilon$-greedy search algorithm that globally explores at extreme timesteps and locally exploits during the intermediate steps where de-mixing occurs. Experiments on EDM and Stable Diffusion reveal state-of-the-art scores for class-conditioned/text-to-image generation, exceeding baselines by up to $164%$ and matching/exceeding MCTS performance. To our knowledge, this is the first practical method for test-time noise trajectory optimization of arbitrary (non-differentiable) rewards.