Archives AI News

Enhancing Machine Learning for Imbalanced Medical Data: A Quantum-Inspired Approach to Synthetic Oversampling (QI-SMOTE)

arXiv:2509.02863v1 Announce Type: new Abstract: Class imbalance remains a critical challenge in machine learning (ML), particularly in the medical domain, where underrepresented minority classes lead to biased models and reduced predictive performance. This study introduces Quantum-Inspired SMOTE (QI-SMOTE), a novel data augmentation technique that enhances the performance of ML classifiers, including Random Forest (RF), Support Vector Machine (SVM), Logistic Regression (LR), k-Nearest Neighbors (KNN), Gradient Boosting (GB), and Neural Networks, by leveraging quantum principles such as quantum evolution and layered entanglement. Unlike conventional oversampling methods, QI-SMOTE generates synthetic instances that preserve complex data structures, improving model generalization and classification accuracy. We validate QI-SMOTE on the MIMIC-III and MIMIC-IV datasets, using mortality detection as a benchmark task due to their clinical significance and inherent class imbalance. We compare our method against traditional oversampling techniques, including Borderline-SMOTE, ADASYN, SMOTE-ENN, SMOTE-TOMEK, and SVM-SMOTE, using key performance metrics such as Accuracy, F1-score, G-Mean, and AUC-ROC. The results demonstrate that QI-SMOTE significantly improves the effectiveness of ensemble methods (RF, GB, ADA), kernel-based models (SVM), and deep learning approaches by producing more informative and balanced training data. By integrating quantum-inspired transformations into the ML pipeline, QI-SMOTE not only mitigates class imbalance but also enhances the robustness and reliability of predictive models in medical diagnostics and decision-making. This study highlights the potential of quantum-inspired resampling techniques in advancing state-of-the-art ML methodologies.

The Nah Bandit: Modeling User Non-compliance in Recommendation Systems

arXiv:2408.07897v2 Announce Type: replace Abstract: Recommendation systems now pervade the digital world, ranging from advertising to entertainment. However, it remains challenging to implement effective recommendation systems in the physical world, such as in mobility or health. This work focuses on a key challenge: in the physical world, it is often easy for the user to opt out of taking any recommendation if they are not to her liking, and to fall back to her baseline behavior. It is thus crucial in cyber-physical recommendation systems to operate with an interaction model that is aware of such user behavior, lest the user abandon the recommendations altogether. This paper thus introduces the Nah Bandit, a tongue-in-cheek reference to describe a Bandit problem where users can say `nah' to the recommendation and opt for their preferred option instead. As such, this problem lies in between a typical bandit setup and supervised learning. We model the user non-compliance by parameterizing an anchoring effect of recommendations on users. We then propose the Expert with Clustering (EWC) algorithm, a hierarchical approach that incorporates feedback from both recommended and non-recommended options to accelerate user preference learning. In a recommendation scenario with $N$ users, $T$ rounds per user, and $K$ clusters, EWC achieves a regret bound of $O(Nsqrt{Tlog K} + NT)$, achieving superior theoretical performance in the short term compared to LinUCB algorithm. Experimental results also highlight that EWC outperforms both supervised learning and traditional contextual bandit approaches. This advancement reveals that effective use of non-compliance feedback can accelerate preference learning and improve recommendation accuracy. This work lays the foundation for future research in Nah Bandit, providing a robust framework for more effective recommendation systems.

Improving Generative Methods for Causal Evaluation via Simulation-Based Inference

arXiv:2509.02892v1 Announce Type: new Abstract: Generating synthetic datasets that accurately reflect real-world observational data is critical for evaluating causal estimators, but remains a challenging task. Existing generative methods offer a solution by producing synthetic datasets anchored in the observed data (source data) while allowing variation in key parameters such as the treatment effect and amount of confounding bias. However, existing methods typically require users to provide point estimates of such parameters (rather than distributions) and fixed estimates (rather than estimates that can be improved with reference to the source data). This denies users the ability to express uncertainty over parameter values and removes the potential for posterior inference, potentially leading to unreliable estimator comparisons. We introduce simulation-based inference for causal evaluation (SBICE), a framework that models generative parameters as uncertain and infers their posterior distribution given a source dataset. Leveraging techniques in simulation-based inference, SBICE identifies parameter configurations that produce synthetic datasets closely aligned with the source data distribution. Empirical results demonstrate that SBICE improves the reliability of estimator evaluations by generating more realistic datasets, which supports a robust and data-consistent approach to causal benchmarking under uncertainty.

Investigating a Model-Agnostic and Imputation-Free Approach for Irregularly-Sampled Multivariate Time-Series Modeling

arXiv:2502.15785v2 Announce Type: replace Abstract: Modeling Irregularly-sampled and Multivariate Time Series (IMTS) is crucial across a variety of applications where different sets of variates may be missing at different time-steps due to sensor malfunctions or high data acquisition costs. Existing approaches for IMTS either consider a two-stage impute-then-model framework or involve specialized architectures specific to a particular model and task. We perform a series of experiments to derive novel insights about the performance of IMTS methods on a variety of semi-synthetic and real-world datasets for both classification and forecasting. We also introduce Missing Feature-aware Time Series Modeling (MissTSM) or MissTSM, a novel model-agnostic and imputation-free approach for IMTS modeling. We show that MissTSM shows competitive performance compared to other IMTS approaches, especially when the amount of missing values is large and the data lacks simplistic periodic structures - conditions common to real-world IMTS applications.

Event Detection and Classification for Long Range Sensing of Elephants Using Seismic Signal

arXiv:2509.02920v1 Announce Type: new Abstract: Detecting elephants through seismic signals is an emerging research topic aimed at developing solutions for Human-Elephant Conflict (HEC). Despite the promising results, such solutions heavily rely on manual classification of elephant footfalls, which limits their applicability for real-time classification in natural settings. To address this limitation and build on our previous work, this study introduces a classification framework targeting resource-constrained implementations, prioritizing both accuracy and computational efficiency. As part of this framework, a novel event detection technique named Contextually Customized Windowing (CCW), tailored specifically for detecting elephant footfalls, was introduced, and evaluations were conducted by comparing it with the Short-Term Average/Long-Term Average (STA/LTA) method. The yielded results show that the maximum validated detection range was 155.6 m in controlled conditions and 140 m in natural environments. Elephant footfall classification using Support Vector Machine (SVM) with a Radial Basis Function (RBF) kernel demonstrated superior performance across multiple settings, achieving an accuracy of 99% in controlled environments, 73% in natural elephant habitats, and 70% in HEC-prone human habitats, the most challenging scenario. Furthermore, feature impact analysis using explainable AI identified the number of Zero Crossings and Dynamic Time Warping (DTW) Alignment Cost as the most influential factors in all experiments, while Predominant Frequency exhibited significant influence in controlled settings.

Explaining Anomalies with Tensor Networks

arXiv:2505.03911v2 Announce Type: replace Abstract: Tensor networks, a class of variational quantum many-body wave functions have attracted considerable research interest across many disciplines, including classical machine learning. Recently, Aizpurua et al. demonstrated explainable anomaly detection with matrix product states on a discrete-valued cyber-security task, using quantum-inspired methods to gain insight into the learned model and detected anomalies. Here, we extend this framework to real-valued data domains. We furthermore introduce tree tensor networks for the task of explainable anomaly detection. We demonstrate these methods with three benchmark problems, show adequate predictive performance compared to several baseline models and both tensor network architectures' ability to explain anomalous samples. We thereby extend the application of tensor networks to a broader class of potential problems and open a pathway for future extensions to more complex tensor network architectures.

A Narrative Review of Clinical Decision Support Systems in Offloading Footwear for Diabetes-Related Foot Ulcers

arXiv:2509.02923v1 Announce Type: new Abstract: Offloading footwear helps prevent and treat diabetic foot ulcers (DFUs) by lowering plantar pressure (PP), yet prescription decisions remain fragmented: feature selection varies, personalization is limited, and evaluation practices differ. We performed a narrative review of 45 studies (12 guidelines/protocols, 25 knowledge-based systems, 8 machine-learning applications) published to Aug 2025. We thematically analyzed knowledge type, decision logic, evaluation methods, and enabling technologies. Guidelines emphasize PP thresholds (=25--30% reduction) but rarely yield actionable, feature-level outputs. Knowledge-based systems use rule- and sensor-driven logic, integrating PP monitoring, adherence tracking, and usability testing. ML work introduces predictive, optimization, and generative models with high computational accuracy but limited explainability and clinical validation. Evaluation remains fragmented: protocols prioritize biomechanical tests; knowledge-based systems assess usability/adherence; ML studies focus on technical accuracy with weak linkage to long-term outcomes. From this synthesis we propose a five-part CDSS framework: (1) a minimum viable dataset; (2) a hybrid architecture combining rules, optimization, and explainable ML; (3) structured feature-level outputs; (4) continuous validation and evaluation; and (5) integration with clinical and telehealth workflows. This framework aims to enable scalable, patient-centered CDSSs for DFU care; prioritizing interoperable datasets, explainable models, and outcome-focused evaluation will be key to clinical adoption.

AI FOMO, Shadow AI, and Other Business Problems

What’s the state of AI in business these days, and how much does it cost us? The post AI FOMO, Shadow AI, and Other Business Problems appeared first on Towards Data Science.