Archives AI News

Rethinking Data Protection in the (Generative) Artificial Intelligence Era

arXiv:2507.03034v4 Announce Type: replace-cross Abstract: The (generative) artificial intelligence (AI) era has profoundly reshaped the meaning and value of data. No longer confined to static content, data now permeates every stage of the AI lifecycle from the training samples that shape model parameters to the prompts and outputs that drive real-world model deployment. This shift renders traditional notions of data protection insufficient, while the boundaries of what needs safeguarding remain poorly defined. Failing to safeguard data in AI systems can inflict societal and individual, underscoring the urgent need to clearly delineate the scope of and rigorously enforce data protection. In this perspective, we propose a four-level taxonomy, including non-usability, privacy preservation, traceability, and deletability, that captures the diverse protection needs arising in modern (generative) AI models and systems. Our framework offers a structured understanding of the trade-offs between data utility and control, spanning the entire AI pipeline, including training datasets, model weights, system prompts, and AI-generated content. We analyze representative technical approaches at each level and reveal regulatory blind spots that leave critical assets exposed. By offering a structured lens to align future AI technologies and governance with trustworthy data practices, we underscore the urgency of rethinking data protection for modern AI techniques and provide timely guidance for developers, researchers, and regulators alike.

A Comprehensive Guide to Differential Privacy: From Theory to User Expectations

arXiv:2509.03294v1 Announce Type: cross Abstract: The increasing availability of personal data has enabled significant advances in fields such as machine learning, healthcare, and cybersecurity. However, this data abundance also raises serious privacy concerns, especially in light of powerful re-identification attacks and growing legal and ethical demands for responsible data use. Differential privacy (DP) has emerged as a principled, mathematically grounded framework for mitigating these risks. This review provides a comprehensive survey of DP, covering its theoretical foundations, practical mechanisms, and real-world applications. It explores key algorithmic tools and domain-specific challenges - particularly in privacy-preserving machine learning and synthetic data generation. The report also highlights usability issues and the need for improved communication and transparency in DP systems. Overall, the goal is to support informed adoption of DP by researchers and practitioners navigating the evolving landscape of data privacy.

Scalable and Loosely-Coupled Multimodal Deep Learning for Breast Cancer Subtyping

arXiv:2509.03408v1 Announce Type: cross Abstract: Healthcare applications are inherently multimodal, benefiting greatly from the integration of diverse data sources. However, the modalities available in clinical settings can vary across different locations and patients. A key area that stands to gain from multimodal integration is breast cancer molecular subtyping, an important clinical task that can facilitate personalized treatment and improve patient prognosis. In this work, we propose a scalable and loosely-coupled multimodal framework that seamlessly integrates data from various modalities, including copy number variation (CNV), clinical records, and histopathology images, to enhance breast cancer subtyping. While our primary focus is on breast cancer, our framework is designed to easily accommodate additional modalities, offering the flexibility to scale up or down with minimal overhead without requiring re-training of existing modalities, making it applicable to other types of cancers as well. We introduce a dual-based representation for whole slide images (WSIs), combining traditional image-based and graph-based WSI representations. This novel dual approach results in significant performance improvements. Moreover, we present a new multimodal fusion strategy, demonstrating its ability to enhance performance across a range of multimodal conditions. Our comprehensive results show that integrating our dual-based WSI representation with CNV and clinical health records, along with our pipeline and fusion strategy, outperforms state-of-the-art methods in breast cancer subtyping.

GAEA: A Geolocation Aware Conversational Assistant

arXiv:2503.16423v3 Announce Type: replace-cross Abstract: Image geolocalization, in which an AI model traditionally predicts the precise GPS coordinates of an image, is a challenging task with many downstream applications. However, the user cannot utilize the model to further their knowledge beyond the GPS coordinates; the model lacks an understanding of the location and the conversational ability to communicate with the user. In recent days, with the tremendous progress of large multimodal models (LMMs) -- proprietary and open-source -- researchers have attempted to geolocalize images via LMMs. However, the issues remain unaddressed; beyond general tasks, for more specialized downstream tasks, such as geolocalization, LMMs struggle. In this work, we propose solving this problem by introducing a conversational model, GAEA, that provides information regarding the location of an image as the user requires. No large-scale dataset enabling the training of such a model exists. Thus, we propose GAEA-1.4M, a comprehensive dataset comprising over 800k images and approximately 1.4M question-answer pairs, constructed by leveraging OpenStreetMap (OSM) attributes and geographical context clues. For quantitative evaluation, we propose a diverse benchmark, GAEA-Bench, comprising 3.5k image-text pairs to evaluate conversational capabilities equipped with diverse question types. We consider 11 state-of-the-art open-source and proprietary LMMs and demonstrate that GAEA significantly outperforms the best open-source model, LLaVA-OneVision, by 18.2% and the best proprietary model, GPT-4o, by 7.2%. Our dataset, model and codes are available.

Optimizing Federated Learning for Scalable Power-demand Forecasting in Microgrids

arXiv:2508.08022v2 Announce Type: replace-cross Abstract: Real-time monitoring of power consumption in cities and micro-grids through the Internet of Things (IoT) can help forecast future demand and optimize grid operations. But moving all consumer-level usage data to the cloud for predictions and analysis at fine time scales can expose activity patterns. Federated Learning~(FL) is a privacy-sensitive collaborative DNN training approach that retains data on edge devices, trains the models on private data locally, and aggregates the local models in the cloud. But key challenges exist: (i) clients can have non-independently identically distributed~(non-IID) data, and (ii) the learning should be computationally cheap while scaling to 1000s of (unseen) clients. In this paper, we develop and evaluate several optimizations to FL training across edge and cloud for time-series demand forecasting in micro-grids and city-scale utilities using DNNs to achieve a high prediction accuracy while minimizing the training cost. We showcase the benefit of using exponentially weighted loss while training and show that it further improves the prediction of the final model. Finally, we evaluate these strategies by validating over 1000s of clients for three states in the US from the OpenEIA corpus, and performing FL both in a pseudo-distributed setting and a Pi edge cluster. The results highlight the benefits of the proposed methods over baselines like ARIMA and DNNs trained for individual consumers, which are not scalable.

Neural Canonical Polyadic Factorization for Traffic Analysis

arXiv:2506.15079v4 Announce Type: replace Abstract: Modern intelligent transportation systems rely on accurate spatiotemporal traffic analysis to optimize urban mobility and infrastructure resilience. However, pervasive missing data caused by sensor failures and heterogeneous sensing gaps fundamentally hinders reliable traffic modeling. This paper proposes a Neural Canonical Polyadic Factorization (NCPF) model that synergizes low-rank tensor algebra with deep representation learning for robust traffic data imputation. The model innovatively embeds CP decomposition into neural architecture through learnable embedding projections, where sparse traffic tensors are encoded into dense latent factors across road segments, time intervals, and mobility metrics. A hierarchical feature fusion mechanism employs Hadamard products to explicitly model multilinear interactions, while stacked multilayer perceptron layers nonlinearly refine these representations to capture complex spatiotemporal couplings. Extensive evaluations on six urban traffic datasets demonstrate NCPF's superiority over six state-of-the-art baselines. By unifying CP decomposition's interpretable factor analysis with neural network's nonlinear expressive power, NCPF provides a principled yet flexible approaches for high-dimensional traffic data imputation, offering critical support for next-generation transportation digital twins and adaptive traffic control systems.

Learn and Unlearn: Addressing Misinformation in Multilingual LLMs

arXiv:2406.13748v3 Announce Type: replace-cross Abstract: This paper investigates the propagation of harmful information in multilingual large language models (LLMs) and evaluates the efficacy of various unlearning methods. We demonstrate that fake information, regardless of the language it is in, once introduced into these models through training data, can spread across different languages, compromising the integrity and reliability of the generated content. Our findings reveal that standard unlearning techniques, which typically focus on English data, are insufficient in mitigating the spread of harmful content in multilingual contexts and could inadvertently reinforce harmful content across languages. We show that only by addressing harmful responses in both English and the original language of the harmful data can we effectively eliminate generations for all languages. This underscores the critical need for comprehensive unlearning strategies that consider the multilingual nature of modern LLMs to enhance their safety and reliability across diverse linguistic landscapes.

The Transparent Earth: A Multimodal Foundation Model for the Earth’s Subsurface

arXiv:2509.02783v1 Announce Type: new Abstract: We present the Transparent Earth, a transformer-based architecture for reconstructing subsurface properties from heterogeneous datasets that vary in sparsity, resolution, and modality, where each modality represents a distinct type of observation (e.g., stress angle, mantle temperature, tectonic plate type). The model incorporates positional encodings of observations together with modality encodings, derived from a text embedding model applied to a description of each modality. This design enables the model to scale to an arbitrary number of modalities, making it straightforward to add new ones not considered in the initial design. We currently include eight modalities spanning directional angles, categorical classes, and continuous properties such as temperature and thickness. These capabilities support in-context learning, enabling the model to generate predictions either with no inputs or with an arbitrary number of additional observations from any subset of modalities. On validation data, this reduces errors in predicting stress angle by more than a factor of three. The proposed architecture is scalable and demonstrates improved performance with increased parameters. Together, these advances make the Transparent Earth an initial foundation model for the Earth's subsurface that ultimately aims to predict any subsurface property anywhere on Earth.

FlowKac: An Efficient Neural Fokker-Planck solver using Temporal Normalizing Flows and the Feynman-Kac Formula

arXiv:2503.11427v2 Announce Type: replace Abstract: Solving the Fokker-Planck equation for high-dimensional complex dynamical systems remains a pivotal yet challenging task due to the intractability of analytical solutions and the limitations of traditional numerical methods. In this work, we present FlowKac, a novel approach that reformulates the Fokker-Planck equation using the Feynman-Kac formula, allowing to query the solution at a given point via the expected values of stochastic paths. A key innovation of FlowKac lies in its adaptive stochastic sampling scheme which significantly reduces the computational complexity while maintaining high accuracy. This sampling technique, coupled with a time-indexed normalizing flow, designed for capturing time-evolving probability densities, enables robust sampling of collocation points, resulting in a flexible and mesh-free solver. This formulation mitigates the curse of dimensionality and enhances computational efficiency and accuracy, which is particularly crucial for applications that inherently require dimensions beyond the conventional three. We validate the robustness and scalability of our method through various experiments on a range of stochastic differential equations, demonstrating significant improvements over existing techniques.

Mentality: A Mamba-based Approach towards Foundation Models for EEG

arXiv:2509.02746v1 Announce Type: new Abstract: This work explores the potential of foundation models, specifically a Mamba-based selective state space model, for enhancing EEG analysis in neurological disorder diagnosis. EEG, crucial for diagnosing conditions like epilepsy, presents significant challenges due to its noisy, high-dimensional, and nonlinear nature. Traditional machine learning methods have made advances in automating EEG analysis but often fail to capture its complex spatio-temporal dynamics. Recent advances in deep learning, particularly in sequence modeling, offer new avenues for creating more generalized and expressive models capable of handling such complexities. By training a Mamba-based model on a large dataset containing seizure and non-seizure EEG recordings through a self-supervised reconstruction task followed by a seizure detection task, we demonstrate the model's effectiveness, achieving an AUROC of 0.72 on a held-out test set. This approach marks a significant step toward developing large-scale, clinically applicable foundation models for EEG data analysis.