Archives AI News

RoboMemory: A Brain-inspired Multi-memory Agentic Framework for Lifelong Learning in Physical Embodied Systems

arXiv:2508.01415v3 Announce Type: replace-cross Abstract: We present RoboMemory, a brain-inspired multi-memory framework for lifelong learning in physical embodied systems, addressing critical challenges in real-world environments: continuous learning, multi-module memory latency, task correlation capture, and infinite-loop mitigation in closed-loop planning. Grounded in cognitive neuroscience, it integrates four core modules: the Information Preprocessor (thalamus-like), the Lifelong Embodied Memory System (hippocampus-like), the Closed-Loop Planning Module (prefrontal lobe-like), and the Low-Level Executer (cerebellum-like) to enable long-term planning and cumulative learning. The Lifelong Embodied Memory System, central to the framework, alleviates inference speed issues in complex memory frameworks via parallelized updates/retrieval across Spatial, Temporal, Episodic, and Semantic submodules. It incorporates a dynamic Knowledge Graph (KG) and consistent architectural design to enhance memory consistency and scalability. Evaluations on EmbodiedBench show RoboMemory outperforms the open-source baseline (Qwen2.5-VL-72B-Ins) by 25% in average success rate and surpasses the closed-source State-of-the-Art (SOTA) (Claude3.5-Sonnet) by 5%, establishing new SOTA. Ablation studies validate key components (critic, spatial memory, long-term memory), while real-world deployment confirms its lifelong learning capability with significantly improved success rates across repeated tasks. RoboMemory alleviates high latency challenges with scalability, serving as a foundational reference for integrating multi-modal memory systems in physical robots.

ANNIE: Be Careful of Your Robots

arXiv:2509.03383v1 Announce Type: new Abstract: The integration of vision-language-action (VLA) models into embodied AI (EAI) robots is rapidly advancing their ability to perform complex, long-horizon tasks in humancentric environments. However, EAI systems introduce critical security risks: a compromised VLA model can directly translate adversarial perturbations on sensory input into unsafe physical actions. Traditional safety definitions and methodologies from the machine learning community are no longer sufficient. EAI systems raise new questions, such as what constitutes safety, how to measure it, and how to design effective attack and defense mechanisms in physically grounded, interactive settings. In this work, we present the first systematic study of adversarial safety attacks on embodied AI systems, grounded in ISO standards for human-robot interactions. We (1) formalize a principled taxonomy of safety violations (critical, dangerous, risky) based on physical constraints such as separation distance, velocity, and collision boundaries; (2) introduce ANNIEBench, a benchmark of nine safety-critical scenarios with 2,400 video-action sequences for evaluating embodied safety; and (3) ANNIE-Attack, a task-aware adversarial framework with an attack leader model that decomposes long-horizon goals into frame-level perturbations. Our evaluation across representative EAI models shows attack success rates exceeding 50% across all safety categories. We further demonstrate sparse and adaptive attack strategies and validate the real-world impact through physical robot experiments. These results expose a previously underexplored but highly consequential attack surface in embodied AI systems, highlighting the urgent need for security-driven defenses in the physical AI era. Code is available at https://github.com/RLCLab/Annie.

Multimodal Iterative RAG for Knowledge Visual Question Answering

arXiv:2509.00798v2 Announce Type: replace-cross Abstract: While Multimodal Large Language Models (MLLMs) have significantly advanced multimodal understanding, their performance remains limited on knowledge-intensive visual questions that require external knowledge beyond the image. Retrieval-Augmented Generation (RAG) has become a promising solution for providing models with external knowledge, its conventional single-pass framework often fails to gather sufficient knowledge. To overcome this limitation, we propose MI-RAG, a Multimodal Iterative RAG framework that leverages reasoning to enhance retrieval and update reasoning over newly retrieved knowledge across modalities. At each iteration, MI-RAG leverages an accumulated reasoning record to dynamically formulate a multi-query. These queries then drive a joint search across heterogeneous knowledge bases containing both visually-grounded and textual knowledge. The newly acquired knowledge is synthesized into the reasoning record, progressively refining understanding across iterations. Experiments on challenging benchmarks, including Encyclopedic VQA, InfoSeek, and OK-VQA, show that MI-RAG significantly improves both retrieval recall and answer accuracy, establishing a scalable approach for compositional reasoning in knowledge-intensive VQA.

sam-llm: interpretable lane change trajectoryprediction via parametric finetuning

arXiv:2509.03462v1 Announce Type: new Abstract: This work introduces SAM-LLM, a novel hybrid architecture that bridges the gap between the contextual reasoning of Large Language Models (LLMs) and the physical precision of kinematic lane change models for autonomous driving. The system is designed for interpretable lane change trajectory prediction by finetuning an LLM to output the core physical parameters of a trajectory model instead of raw coordinates. For lane-keeping scenarios, the model predicts discrete coordinates, but for lane change maneuvers, it generates the parameters for an enhanced Sinusoidal Acceleration Model (SAM), including lateral displacement, maneuver duration, initial lateral velocity, and longitudinal velocity change. This parametric approach yields a complete, continuous, and physically plausible trajectory model that is inherently interpretable and computationally efficient, achieving an 80% reduction in output size compared to coordinate-based methods. The SAM-LLM achieves a state-of-the-art overall intention prediction accuracy of 98.73%, demonstrating performance equivalent to traditional LLM predictors while offering significant advantages in explainability and resource efficiency.

JARVIS: A Neuro-Symbolic Commonsense Reasoning Framework for Conversational Embodied Agents

arXiv:2208.13266v4 Announce Type: replace Abstract: Building a conversational embodied agent to execute real-life tasks has been a long-standing yet quite challenging research goal, as it requires effective human-agent communication, multi-modal understanding, long-range sequential decision making, etc. Traditional symbolic methods have scaling and generalization issues, while end-to-end deep learning models suffer from data scarcity and high task complexity, and are often hard to explain. To benefit from both worlds, we propose JARVIS, a neuro-symbolic commonsense reasoning framework for modular, generalizable, and interpretable conversational embodied agents. First, it acquires symbolic representations by prompting large language models (LLMs) for language understanding and sub-goal planning, and by constructing semantic maps from visual observations. Then the symbolic module reasons for sub-goal planning and action generation based on task- and action-level common sense. Extensive experiments on the TEACh dataset validate the efficacy and efficiency of our JARVIS framework, which achieves state-of-the-art (SOTA) results on all three dialog-based embodied tasks, including Execution from Dialog History (EDH), Trajectory from Dialog (TfD), and Two-Agent Task Completion (TATC) (e.g., our method boosts the unseen Success Rate on EDH from 6.1% to 15.8%). Moreover, we systematically analyze the essential factors that affect the task performance and also demonstrate the superiority of our method in few-shot settings. Our JARVIS model ranks first in the Alexa Prize SimBot Public Benchmark Challenge.

The Lifecycle Principle: Stabilizing Dynamic Neural Networks with State Memory

arXiv:2509.02575v1 Announce Type: cross Abstract: I investigate a stronger form of regularization by deactivating neurons for extended periods, a departure from the temporary changes of methods like Dropout. However, this long-term dynamism introduces a critical challenge: severe training instability when neurons are revived with random weights. To solve this, I propose the Lifecycle (LC) principle, a regularization mechanism centered on a key innovation: state memory. Instead of re-initializing a revived neuron, my method restores its parameters to their last known effective state. This process preserves learned knowledge and avoids destructive optimization shocks. My theoretical analysis reveals that the LC principle smooths the loss landscape, guiding optimization towards flatter minima associated with better generalization. Experiments on image classification benchmarks demonstrate that my method improves generalization and robustness. Crucially, ablation studies confirm that state memory is essential for achieving these gains.

Shutdownable Agents through POST-Agency

arXiv:2505.20203v2 Announce Type: replace Abstract: Many fear that future artificial agents will resist shutdown. I present an idea - the POST-Agents Proposal - for ensuring that doesn't happen. I propose that we train agents to satisfy Preferences Only Between Same-Length Trajectories (POST). I then prove that POST - together with other conditions - implies Neutrality+: the agent maximizes expected utility, ignoring the probability distribution over trajectory-lengths. I argue that Neutrality+ keeps agents shutdownable and allows them to be useful.

KIRETT: Knowledge-Graph-Based Smart Treatment Assistant for Intelligent Rescue Operations

arXiv:2508.07834v3 Announce Type: replace Abstract: Over the years, the need for rescue operations throughout the world has increased rapidly. Demographic changes and the resulting risk of injury or health disorders form the basis for emergency calls. In such scenarios, first responders are in a rush to reach the patient in need, provide first aid, and save lives. In these situations, they must be able to provide personalized and optimized healthcare in the shortest possible time and estimate the patients condition with the help of freshly recorded vital data in an emergency situation. However, in such a timedependent situation, first responders and medical experts cannot fully grasp their knowledge and need assistance and recommendation for further medical treatments. To achieve this, on the spot calculated, evaluated, and processed knowledge must be made available to improve treatments by first responders. The Knowledge Graph presented in this article as a central knowledge representation provides first responders with an innovative knowledge management that enables intelligent treatment recommendations with an artificial intelligence-based pre-recognition of the situation.

Charting the Future of Scholarly Knowledge with AI: A Community Perspective

arXiv:2509.02581v1 Announce Type: cross Abstract: Despite the growing availability of tools designed to support scholarly knowledge extraction and organization, many researchers still rely on manual methods, sometimes due to unfamiliarity with existing technologies or limited access to domain-adapted solutions. Meanwhile, the rapid increase in scholarly publications across disciplines has made it increasingly difficult to stay current, further underscoring the need for scalable, AI-enabled approaches to structuring and synthesizing scholarly knowledge. Various research communities have begun addressing this challenge independently, developing tools and frameworks aimed at building reliable, dynamic, and queryable scholarly knowledge bases. However, limited interaction across these communities has hindered the exchange of methods, models, and best practices, slowing progress toward more integrated solutions. This manuscript identifies ways to foster cross-disciplinary dialogue, identify shared challenges, categorize new collaboration and shape future research directions in scholarly knowledge and organization.

P2DT: Mitigating Forgetting in task-incremental Learning with progressive prompt Decision Transformer

arXiv:2401.11666v2 Announce Type: replace-cross Abstract: Catastrophic forgetting poses a substantial challenge for managing intelligent agents controlled by a large model, causing performance degradation when these agents face new tasks. In our work, we propose a novel solution - the Progressive Prompt Decision Transformer (P2DT). This method enhances a transformer-based model by dynamically appending decision tokens during new task training, thus fostering task-specific policies. Our approach mitigates forgetting in continual and offline reinforcement learning scenarios. Moreover, P2DT leverages trajectories collected via traditional reinforcement learning from all tasks and generates new task-specific tokens during training, thereby retaining knowledge from previous studies. Preliminary results demonstrate that our model effectively alleviates catastrophic forgetting and scales well with increasing task environments.