Archives AI News

OSC: Cognitive Orchestration through Dynamic Knowledge Alignment in Multi-Agent LLM Collaboration

arXiv:2509.04876v1 Announce Type: new Abstract: This paper introduces OSC (Orchestrating Cognitive Synergy), a knowledge-aware adaptive collaboration framework designed to enhance cognitive synergy in multi-agent systems with large language models. While prior work has advanced agent selection and result aggregation, efficient linguistic interactions for deep collaboration among expert agents remain a critical bottleneck. OSC addresses this gap as a pivotal intermediate layer between selection and aggregation, introducing Collaborator Knowledge Models (CKM) to enable each agent to dynamically perceive its collaborators' cognitive states. Through real-time cognitive gap analysis, agents adaptively adjust communication behaviors, including content focus, detail level, and expression style, using learned strategies. Experiments on complex reasoning and problem-solving benchmarks demonstrate that OSC significantly improves task performance and communication efficiency, transforming "parallel-working individuals'' into a "deeply collaborative cognitive team.'' This framework not only optimizes multi-agent collaboration but also offers new insights into LLM agent interaction behaviors.

FC-PINO: High Precision Physics-Informed Neural Operators via Fourier Continuation

arXiv:2211.15960v2 Announce Type: replace Abstract: The physics-informed neural operator (PINO) is a machine learning paradigm that has demonstrated promising results for learning solutions to partial differential equations (PDEs). It leverages the Fourier Neural Operator to learn solution operators in function spaces and leverages physics losses during training to penalize deviations from known physics laws. Spectral differentiation provides an efficient way to compute derivatives for the physics losses, but it inherently assumes periodicity. When applied to non-periodic functions, this assumption of periodicity can lead to significant errors, including Gibbs phenomena near domain boundaries which degrade the accuracy of both function representations and derivative computations, especially for higher order derivatives. To overcome this limitation, we introduce the FC-PINO (Fourier-Continuation-based PINO) architecture which extends the accuracy and efficiency of PINO and spectral differentiation to non-periodic and non-smooth PDEs. In FC-PINO, we propose integrating Fourier continuation into the PINO framework, and test two different continuation approaches: FC-Legendre and FC-Gram. By transforming non-periodic signals into periodic functions on extended domains in a well-conditioned manner, Fourier continuation enables fast and accurate derivative computations. This approach avoids the discretization sensitivity of finite differences and the memory overhead of automatic differentiation. We demonstrate that standard PINO struggles to solve non-periodic and non-smooth PDEs with high precision, across challenging benchmarks. In contrast, the proposed FC-PINO provides accurate, robust, and scalable solutions, substantially outperforming PINO alternatives, and demonstrating that Fourier continuation is critical for extending PINO to a wider range of PDE problems when high-precision solutions are needed.

Robust Experts: the Effect of Adversarial Training on CNNs with Sparse Mixture-of-Experts Layers

arXiv:2509.05086v1 Announce Type: cross Abstract: Robustifying convolutional neural networks (CNNs) against adversarial attacks remains challenging and often requires resource-intensive countermeasures. We explore the use of sparse mixture-of-experts (MoE) layers to improve robustness by replacing selected residual blocks or convolutional layers, thereby increasing model capacity without additional inference cost. On ResNet architectures trained on CIFAR-100, we find that inserting a single MoE layer in the deeper stages leads to consistent improvements in robustness under PGD and AutoPGD attacks when combined with adversarial training. Furthermore, we discover that when switch loss is used for balancing, it causes routing to collapse onto a small set of overused experts, thereby concentrating adversarial training on these paths and inadvertently making them more robust. As a result, some individual experts outperform the gated MoE model in robustness, suggesting that robust subpaths emerge through specialization. Our code is available at https://github.com/KASTEL-MobilityLab/robust-sparse-moes.

Symbolic Graphics Programming with Large Language Models

arXiv:2509.05208v1 Announce Type: cross Abstract: Large language models (LLMs) excel at program synthesis, yet their ability to produce symbolic graphics programs (SGPs) that render into precise visual content remains underexplored. We study symbolic graphics programming, where the goal is to generate an SGP from a natural-language description. This task also serves as a lens into how LLMs understand the visual world by prompting them to generate images rendered from SGPs. Among various SGPs, our paper sticks to scalable vector graphics (SVGs). We begin by examining the extent to which LLMs can generate SGPs. To this end, we introduce SGP-GenBench, a comprehensive benchmark covering object fidelity, scene fidelity, and compositionality (attribute binding, spatial relations, numeracy). On SGP-GenBench, we discover that frontier proprietary models substantially outperform open-source models, and performance correlates well with general coding capabilities. Motivated by this gap, we aim to improve LLMs' ability to generate SGPs. We propose a reinforcement learning (RL) with verifiable rewards approach, where a format-validity gate ensures renderable SVG, and a cross-modal reward aligns text and the rendered image via strong vision encoders (e.g., SigLIP for text-image and DINO for image-image). Applied to Qwen-2.5-7B, our method substantially improves SVG generation quality and semantics, achieving performance on par with frontier systems. We further analyze training dynamics, showing that RL induces (i) finer decomposition of objects into controllable primitives and (ii) contextual details that improve scene coherence. Our results demonstrate that symbolic graphics programming offers a precise and interpretable lens on cross-modal grounding.

RAVEN: Query-Guided Representation Alignment for Question Answering over Audio, Video, Embedded Sensors, and Natural Language

arXiv:2505.17114v3 Announce Type: replace-cross Abstract: Multimodal question answering (QA) often requires identifying which video, audio, or sensor tokens are relevant to the question. Yet modality disagreements are common: off-camera speech, background noise, or motion outside the field of view often mislead fusion models that weight all streams equally. We present RAVEN, a unified QA architecture whose core is QuART, a query-conditioned cross-modal gating module that assigns scalar relevance scores to each token across modalities, enabling the model to amplify informative signals and suppress distractors before fusion. RAVEN is trained through a three-stage pipeline comprising unimodal pretraining, query-aligned fusion, and disagreement-oriented fine-tuning -- each stage targeting a distinct challenge in multi-modal reasoning: representation quality, cross-modal relevance, and robustness to modality mismatch. To support training and evaluation, we release AVS-QA, a dataset of 300K synchronized Audio--Video-Sensor streams paired with automatically generated question-answer pairs. Experimental results on seven multi-modal QA benchmarks -- including egocentric and exocentric tasks -- show that RAVEN achieves up to 14.5% and 8.0% gains in accuracy compared to state-of-the-art multi-modal large language models, respectively. Incorporating sensor data provides an additional 16.4% boost, and the model remains robust under modality corruption, outperforming SOTA baselines by 50.23%. Our code and dataset are available at https://github.com/BASHLab/RAVEN.

Dynamic Speculative Agent Planning

arXiv:2509.01920v2 Announce Type: replace-cross Abstract: Despite their remarkable success in complex tasks propelling widespread adoption, large language-model-based agents still face critical deployment challenges due to prohibitive latency and inference costs. While recent work has explored various methods to accelerate inference, existing approaches suffer from significant limitations: they either fail to preserve performance fidelity, require extensive offline training of router modules, or incur excessive operational costs. Moreover, they provide minimal user control over the tradeoff between acceleration and other performance metrics. To address these gaps, we introduce Dynamic Speculative Planning (DSP), an asynchronous online reinforcement learning framework that provides lossless acceleration with substantially reduced costs without requiring additional pre-deployment preparation. DSP explicitly optimizes a joint objective balancing end-to-end latency against dollar cost, allowing practitioners to adjust a single parameter that steers the system toward faster responses, cheaper operation, or any point along this continuum. Experiments on two standard agent benchmarks demonstrate that DSP achieves comparable efficiency to the fastest lossless acceleration method while reducing total cost by 30% and unnecessary cost up to 60%. Our code and data are available through https://github.com/guanyilin428/Dynamic-Speculative-Planning.

Simple Yet Effective: An Information-Theoretic Approach to Multi-LLM Uncertainty Quantification

arXiv:2507.07236v2 Announce Type: replace Abstract: Large language models (LLMs) often behave inconsistently across inputs, indicating uncertainty and motivating the need for its quantification in high-stakes settings. Prior work on calibration and uncertainty quantification often focuses on individual models, overlooking the potential of model diversity. We hypothesize that LLMs make complementary predictions due to differences in training and the Zipfian nature of language, and that aggregating their outputs leads to more reliable uncertainty estimates. To leverage this, we propose MUSE (Multi-LLM Uncertainty via Subset Ensembles), a simple information-theoretic method that uses Jensen-Shannon Divergence to identify and aggregate well-calibrated subsets of LLMs. Experiments on binary prediction tasks demonstrate improved calibration and predictive performance compared to single-model and na"ive ensemble baselines. In addition, we explore using MUSE as guided signals with chain-of-thought distillation to fine-tune LLMs for calibration. MUSE is available at:https://github.com/LARK-NLP-Lab/MUSE.

PersonaGym: Evaluating Persona Agents and LLMs

arXiv:2407.18416v5 Announce Type: replace-cross Abstract: Persona agents, which are LLM agents conditioned to act according to an assigned persona, enable contextually rich and user aligned interactions across domains like education and healthcare. However, evaluating how faithfully these agents adhere to their personas remains a significant challenge, particularly in free-form settings that demand consistency across diverse, persona-relevant environments. We introduce PersonaGym, the first dynamic evaluation framework for persona agents, and PersonaScore, a human-aligned automatic metric grounded in decision theory that enables comprehensive large-scale evaluation. Our evaluation of 10 leading LLMs across 200 personas and 10,000 questions reveals significant advancement opportunities. For example, GPT-4.1 had the exact same PersonaScore as LLaMA-3-8b despite being a more recent and advanced closed source model. Importantly, increased model size and complexity do not necessarily enhance persona agent capabilities, underscoring the need for algorithmic and architectural innovation toward faithful, performant persona agents.

Measuring the Measures: Discriminative Capacity of Representational Similarity Metrics Across Model Families

arXiv:2509.04622v1 Announce Type: new Abstract: Representational similarity metrics are fundamental tools in neuroscience and AI, yet we lack systematic comparisons of their discriminative power across model families. We introduce a quantitative framework to evaluate representational similarity measures based on their ability to separate model families-across architectures (CNNs, Vision Transformers, Swin Transformers, ConvNeXt) and training regimes (supervised vs. self-supervised). Using three complementary separability measures-dprime from signal detection theory, silhouette coefficients and ROC-AUC, we systematically assess the discriminative capacity of commonly used metrics including RSA, linear predictivity, Procrustes, and soft matching. We show that separability systematically increases as metrics impose more stringent alignment constraints. Among mapping-based approaches, soft-matching achieves the highest separability, followed by Procrustes alignment and linear predictivity. Non-fitting methods such as RSA also yield strong separability across families. These results provide the first systematic comparison of similarity metrics through a separability lens, clarifying their relative sensitivity and guiding metric choice for large-scale model and brain comparisons.

Split Conformal Prediction in the Function Space with Neural Operators

arXiv:2509.04623v1 Announce Type: new Abstract: Uncertainty quantification for neural operators remains an open problem in the infinite-dimensional setting due to the lack of finite-sample coverage guarantees over functional outputs. While conformal prediction offers finite-sample guarantees in finite-dimensional spaces, it does not directly extend to function-valued outputs. Existing approaches (Gaussian processes, Bayesian neural networks, and quantile-based operators) require strong distributional assumptions or yield conservative coverage. This work extends split conformal prediction to function spaces following a two step method. We first establish finite-sample coverage guarantees in a finite-dimensional space using a discretization map in the output function space. Then these guarantees are lifted to the function-space by considering the asymptotic convergence as the discretization is refined. To characterize the effect of resolution, we decompose the conformal radius into discretization, calibration, and misspecification components. This decomposition motivates a regression-based correction to transfer calibration across resolutions. Additionally, we propose two diagnostic metrics (conformal ensemble score and internal agreement) to quantify forecast degradation in autoregressive settings. Empirical results show that our method maintains calibrated coverage with less variation under resolution shifts and achieves better coverage in super-resolution tasks.