Archives AI News

Tree-Guided Diffusion Planner

arXiv:2508.21800v1 Announce Type: new Abstract: Planning with pretrained diffusion models has emerged as a promising approach for solving test-time guided control problems. However, standard gradient guidance typically performs optimally under convex and differentiable reward landscapes, showing substantially reduced effectiveness in real-world scenarios involving non-convex objectives, non-differentiable constraints, and multi-reward structures. Furthermore, recent supervised planning approaches require task-specific training or value estimators, which limits test-time flexibility and zero-shot generalization. We propose a Tree-guided Diffusion Planner (TDP), a zero-shot test-time planning framework that balances exploration and exploitation through structured trajectory generation. We frame test-time planning as a tree search problem using a bi-level sampling process: (1) diverse parent trajectories are produced via training-free particle guidance to encourage broad exploration, and (2) sub-trajectories are refined through fast conditional denoising guided by task objectives. TDP addresses the limitations of gradient guidance by exploring diverse trajectory regions and harnessing gradient information across this expanded solution space using only pretrained models and test-time reward signals. We evaluate TDP on three diverse tasks: maze gold-picking, robot arm block manipulation, and AntMaze multi-goal exploration. TDP consistently outperforms state-of-the-art approaches on all tasks. The project page can be found at: tree-diffusion-planner.github.io.

CE-RS-SBCIT A Novel Channel Enhanced Hybrid CNN Transformer with Residual, Spatial, and Boundary-Aware Learning for Brain Tumor MRI Analysis

arXiv:2508.17128v2 Announce Type: replace-cross Abstract: Brain tumors remain among the most lethal human diseases, where early detection and accurate classification are critical for effective diagnosis and treatment planning. Although deep learning-based computer-aided diagnostic (CADx) systems have shown remarkable progress. However, conventional convolutional neural networks (CNNs) and Transformers face persistent challenges, including high computational cost, sensitivity to minor contrast variations, structural heterogeneity, and texture inconsistencies in MRI data. Therefore, a novel hybrid framework, CE-RS-SBCIT, is introduced, integrating residual and spatial learning-based CNNs with transformer-driven modules. The proposed framework exploits local fine-grained and global contextual cues through four core innovations: (i) a smoothing and boundary-based CNN-integrated Transformer (SBCIT), (ii) tailored residual and spatial learning CNNs, (iii) a channel enhancement (CE) strategy, and (iv) a novel spatial attention mechanism. The developed SBCIT employs stem convolution and contextual interaction transformer blocks with systematic smoothing and boundary operations, enabling efficient global feature modeling. Moreover, Residual and spatial CNNs, enhanced by auxiliary transfer-learned feature maps, enrich the representation space, while the CE module amplifies discriminative channels and mitigates redundancy. Furthermore, the spatial attention mechanism selectively emphasizes subtle contrast and textural variations across tumor classes. Extensive evaluation on challenging MRI datasets from Kaggle and Figshare, encompassing glioma, meningioma, pituitary tumors, and healthy controls, demonstrates superior performance, achieving 98.30% accuracy, 98.08% sensitivity, 98.25% F1-score, and 98.43% precision.

Orientability of Causal Relations in Time Series using Summary Causal Graphs and Faithful Distributions

arXiv:2508.21742v1 Announce Type: new Abstract: Understanding causal relations between temporal variables is a central challenge in time series analysis, particularly when the full causal structure is unknown. Even when the full causal structure cannot be fully specified, experts often succeed in providing a high-level abstraction of the causal graph, known as a summary causal graph, which captures the main causal relations between different time series while abstracting away micro-level details. In this work, we present conditions that guarantee the orientability of micro-level edges between temporal variables given the background knowledge encoded in a summary causal graph and assuming having access to a faithful and causally sufficient distribution with respect to the true unknown graph. Our results provide theoretical guarantees for edge orientation at the micro-level, even in the presence of cycles or bidirected edges at the macro-level. These findings offer practical guidance for leveraging SCGs to inform causal discovery in complex temporal systems and highlight the value of incorporating expert knowledge to improve causal inference from observational time series data.

ETTRL: Balancing Exploration and Exploitation in LLM Test-Time Reinforcement Learning Via Entropy Mechanism

arXiv:2508.11356v2 Announce Type: replace-cross Abstract: Recent advancements in Large Language Models have yielded significant improvements in complex reasoning tasks such as mathematics and programming. However, these models remain heavily dependent on annotated data and exhibit limited adaptability in unsupervised scenarios. To address these limitations, test-time reinforcement learning (TTRL) has been proposed, which enables self-optimization by leveraging model-generated pseudo-labels. Despite its promise, TTRL faces several key challenges, including high inference costs due to parallel rollouts and early-stage estimation bias that fosters overconfidence, reducing output diversity and causing performance plateaus. To address these challenges, we introduce an entropy-based mechanism to enhance the exploration-exploitation balance in test-time reinforcement learning through two strategies: Entropy-fork Tree Majority Rollout (ETMR) and Entropy-based Advantage Reshaping (EAR). Compared with the baseline, our approach enables Llama3.1-8B to achieve a 68 percent relative improvement in Pass at 1 metric on the AIME 2024 benchmark, while consuming only 60 percent of the rollout tokens budget. This highlights our method's ability to effectively optimize the trade-off between inference efficiency, diversity, and estimation robustness, thereby advancing unsupervised reinforcement learning for open-domain reasoning tasks.

Freeze and Conquer: Reusable Ansatz for Solving the Traveling Salesman Problem

arXiv:2508.21730v1 Announce Type: new Abstract: In this paper we present a variational algorithm for the Traveling Salesman Problem (TSP) that combines (i) a compact encoding of permutations, which reduces the qubit requirement too, (ii) an optimize-freeze-reuse strategy: where the circuit topology (``Ansatz'') is first optimized on a training instance by Simulated Annealing (SA), then ``frozen'' and re-used on novel instances, limited to a rapid re-optimization of only the circuit parameters. This pipeline eliminates costly structural research in testing, making the procedure immediately implementable on NISQ hardware. On a set of $40$ randomly generated symmetric instances that span $4 - 7$ cities, the resulting Ansatz achieves an average optimal trip sampling probability of $100%$ for 4 city cases, $90%$ for 5 city cases and $80%$ for 6 city cases. With 7 cities the success rate drops markedly to an average of $sim 20%$, revealing the onset of scalability limitations of the proposed method. The results show robust generalization ability for moderate problem sizes and indicate how freezing the Ansatz can dramatically reduce time-to-solution without degrading solution quality. The paper also discusses scalability limitations, the impact of ``warm-start'' initialization of parameters, and prospects for extension to more complex problems, such as Vehicle Routing and Job-Shop Scheduling.

Quantifying Fairness in LLMs Beyond Tokens: A Semantic and Statistical Perspective

arXiv:2506.19028v4 Announce Type: replace-cross Abstract: Large Language Models (LLMs) often generate responses with inherent biases, undermining their reliability in real-world applications. Existing evaluation methods often overlook biases in long-form responses and the intrinsic variability of LLM outputs. To address these challenges, we propose FiSCo (Fine-grained Semantic Comparison), a novel statistical framework to evaluate group-level fairness in LLMs by detecting subtle semantic differences in long-form responses across demographic groups. Unlike prior work focusing on sentiment or token-level comparisons, FiSCo goes beyond surface-level analysis by operating at the claim level, leveraging entailment checks to assess the consistency of meaning across responses. We decompose model outputs into semantically distinct claims and apply statistical hypothesis testing to compare inter- and intra-group similarities, enabling robust detection of subtle biases. We formalize a new group counterfactual fairness definition and validate FiSCo on both synthetic and human-annotated datasets spanning gender, race, and age. Experiments show that FiSCo more reliably identifies nuanced biases while reducing the impact of stochastic LLM variability, outperforming various evaluation metrics.

PosterForest: Hierarchical Multi-Agent Collaboration for Scientific Poster Generation

arXiv:2508.21720v1 Announce Type: new Abstract: We present a novel training-free framework, textit{PosterForest}, for automated scientific poster generation. Unlike prior approaches, which largely neglect the hierarchical structure of scientific documents and the semantic integration of textual and visual elements, our method addresses both challenges directly. We introduce the textit{Poster Tree}, a hierarchical intermediate representation that jointly encodes document structure and visual-textual relationships at multiple levels. Our framework employs a multi-agent collaboration strategy, where agents specializing in content summarization and layout planning iteratively coordinate and provide mutual feedback. This approach enables the joint optimization of logical consistency, content fidelity, and visual coherence. Extensive experiments on multiple academic domains show that our method outperforms existing baselines in both qualitative and quantitative evaluations. The resulting posters achieve quality closest to expert-designed ground truth and deliver superior information preservation, structural clarity, and user preference.

Leveraging Imperfection with MEDLEY A Multi-Model Approach Harnessing Bias in Medical AI

arXiv:2508.21648v1 Announce Type: new Abstract: Bias in medical artificial intelligence is conventionally viewed as a defect requiring elimination. However, human reasoning inherently incorporates biases shaped by education, culture, and experience, suggesting their presence may be inevitable and potentially valuable. We propose MEDLEY (Medical Ensemble Diagnostic system with Leveraged diversitY), a conceptual framework that orchestrates multiple AI models while preserving their diverse outputs rather than collapsing them into a consensus. Unlike traditional approaches that suppress disagreement, MEDLEY documents model-specific biases as potential strengths and treats hallucinations as provisional hypotheses for clinician verification. A proof-of-concept demonstrator was developed using over 30 large language models, creating a minimum viable product that preserved both consensus and minority views in synthetic cases, making diagnostic uncertainty and latent biases transparent for clinical oversight. While not yet a validated clinical tool, the demonstration illustrates how structured diversity can enhance medical reasoning under clinician supervision. By reframing AI imperfection as a resource, MEDLEY offers a paradigm shift that opens new regulatory, ethical, and innovation pathways for developing trustworthy medical AI systems.

Roll the dice & look before you leap: Going beyond the creative limits of next-token prediction

arXiv:2504.15266v4 Announce Type: replace-cross Abstract: We design a suite of minimal algorithmic tasks that are a loose abstraction of open-ended real-world tasks. This allows us to cleanly and controllably quantify the creative limits of the present-day language model. Much like real-world tasks that require a creative, far-sighted leap of thought, our tasks require an implicit, open-ended stochastic planning step that either (a) discovers new connections in an abstract knowledge graph (like in wordplay, drawing analogies, or research) or (b) constructs new patterns (like in designing math problems or new proteins). In these tasks, we empirically and conceptually argue how next-token learning is myopic; multi-token approaches, namely teacherless training and diffusion models, comparatively excel in producing diverse and original output. Secondly, to elicit randomness without hurting coherence, we find that injecting noise at the input layer (dubbed seed-conditioning) works surprisingly as well as (and in some conditions, better than) temperature sampling from the output layer. Thus, our work offers a principled, minimal test-bed for analyzing open-ended creative skills, and offers new arguments for going beyond next-token learning and temperature sampling. We make part of the code available under https://github.com/chenwu98/algorithmic-creativity

A-MHA*: Anytime Multi-Heuristic A*

arXiv:2508.21637v1 Announce Type: new Abstract: Designing good heuristic functions for graph search requires adequate domain knowledge. It is often easy to design heuristics that perform well and correlate with the underlying true cost-to-go values in certain parts of the search space but these may not be admissible throughout the domain thereby affecting the optimality guarantees of the search. Bounded suboptimal search using several such partially good but inadmissible heuristics was developed in Multi-Heuristic A* (MHA*). Although MHA* leverages multiple inadmissible heuristics to potentially generate a faster suboptimal solution, the original version does not improve the solution over time. It is a one shot algorithm that requires careful setting of inflation factors to obtain a desired one time solution. In this work, we tackle this issue by extending MHA* to an anytime version that finds a feasible suboptimal solution quickly and continually improves it until time runs out. Our work is inspired from the Anytime Repairing A* (ARA*) algorithm. We prove that our precise adaptation of ARA* concepts in the MHA* framework preserves the original suboptimal and completeness guarantees and enhances MHA* to perform in an anytime fashion. Furthermore, we report the performance of A-MHA* in 3-D path planning domain and sliding tiles puzzle and compare against MHA* and other anytime algorithms.