Archives AI News

Latent Adaptive Planner for Dynamic Manipulation

arXiv:2505.03077v2 Announce Type: replace-cross Abstract: We present the Latent Adaptive Planner (LAP), a trajectory-level latent-variable policy for dynamic nonprehensile manipulation (e.g., box catching) that formulates planning as inference in a low-dimensional latent space and is learned effectively from human demonstration videos. During execution, LAP achieves real-time adaptation by maintaining a posterior over the latent plan and performing variational replanning as new observations arrive. To bridge the embodiment gap between humans and robots, we introduce a model-based proportional mapping that regenerates accurate kinematic-dynamic joint states and object positions from human demonstrations. Through challenging box catching experiments with varying object properties, LAP demonstrates superior success rates, trajectory smoothness, and energy efficiency by learning human-like compliant motions and adaptive behaviors. Overall, LAP enables dynamic manipulation with real-time adaptation and successfully transfer across heterogeneous robot platforms using the same human demonstration videos.

CARJAN: Agent-Based Generation and Simulation of Traffic Scenarios with AJAN

arXiv:2508.21411v1 Announce Type: new Abstract: User-friendly modeling and virtual simulation of urban traffic scenarios with different types of interacting agents such as pedestrians, cyclists and autonomous vehicles remains a challenge. We present CARJAN, a novel tool for semi-automated generation and simulation of such scenarios based on the multi-agent engineering framework AJAN and the driving simulator CARLA. CARJAN provides a visual user interface for the modeling, storage and maintenance of traffic scenario layouts, and leverages SPARQL Behavior Tree-based decision-making and interactions for agents in dynamic scenario simulations in CARLA. CARJAN provides a first integrated approach for interactive, intelligent agent-based generation and simulation of virtual traffic scenarios in CARLA.

Invited Paper: Feature-to-Classifier Co-Design for Mixed-Signal Smart Flexible Wearables for Healthcare at the Extreme Edge

arXiv:2508.19637v2 Announce Type: replace-cross Abstract: Flexible Electronics (FE) offer a promising alternative to rigid silicon-based hardware for wearable healthcare devices, enabling lightweight, conformable, and low-cost systems. However, their limited integration density and large feature sizes impose strict area and power constraints, making ML-based healthcare systems-integrating analog frontend, feature extraction and classifier-particularly challenging. Existing FE solutions often neglect potential system-wide solutions and focus on the classifier, overlooking the substantial hardware cost of feature extraction and Analog-to-Digital Converters (ADCs)-both major contributors to area and power consumption. In this work, we present a holistic mixed-signal feature-to-classifier co-design framework for flexible smart wearable systems. To the best of our knowledge, we design the first analog feature extractors in FE, significantly reducing feature extraction cost. We further propose an hardware-aware NAS-inspired feature selection strategy within ML training, enabling efficient, application-specific designs. Our evaluation on healthcare benchmarks shows our approach delivers highly accurate, ultra-area-efficient flexible systems-ideal for disposable, low-power wearable monitoring.

Developer Insights into Designing AI-Based Computer Perception Tools

arXiv:2508.21733v1 Announce Type: cross Abstract: Artificial intelligence (AI)-based computer perception (CP) technologies use mobile sensors to collect behavioral and physiological data for clinical decision-making. These tools can reshape how clinical knowledge is generated and interpreted. However, effective integration of these tools into clinical workflows depends on how developers balance clinical utility with user acceptability and trustworthiness. Our study presents findings from 20 in-depth interviews with developers of AI-based CP tools. Interviews were transcribed and inductive, thematic analysis was performed to identify 4 key design priorities: 1) to account for context and ensure explainability for both patients and clinicians; 2) align tools with existing clinical workflows; 3) appropriately customize to relevant stakeholders for usability and acceptability; and 4) push the boundaries of innovation while aligning with established paradigms. Our findings highlight that developers view themselves as not merely technical architects but also ethical stewards, designing tools that are both acceptable by users and epistemically responsible (prioritizing objectivity and pushing clinical knowledge forward). We offer the following suggestions to help achieve this balance: documenting how design choices around customization are made, defining limits for customization choices, transparently conveying information about outputs, and investing in user training. Achieving these goals will require interdisciplinary collaboration between developers, clinicians, and ethicists.

Middo: Model-Informed Dynamic Data Optimization for Enhanced LLM Fine-Tuning via Closed-Loop Learning

arXiv:2508.21589v1 Announce Type: cross Abstract: Supervised Fine-Tuning (SFT) Large Language Models (LLM) fundamentally rely on high-quality training data. While data selection and data synthesis are two common strategies to improve data quality, existing approaches often face limitations in static dataset curation that fail to adapt to evolving model capabilities. In this paper, we introduce Middo, a self-evolving Model-informed dynamic data optimization framework that uses model-aware data selection and context-preserving data refinement. Unlike conventional one-off filtering/synthesis methods, our framework establishes a closed-loop optimization system: (1) A self-referential diagnostic module proactively identifies suboptimal samples through tri-axial model signals - loss patterns (complexity), embedding cluster dynamics (diversity), and self-alignment scores (quality); (2) An adaptive optimization engine then transforms suboptimal samples into pedagogically valuable training points while preserving semantic integrity; (3) This optimization process continuously evolves with model capability through dynamic learning principles. Experiments on multiple benchmarks demonstrate that our method consistently enhances the quality of seed data and boosts LLM's performance with improving accuracy by 7.15% on average while maintaining the original dataset scale. This work establishes a new paradigm for sustainable LLM training through dynamic human-AI co-evolution of data and models. Our datasets, models, and code are coming soon.

AI Simulation by Digital Twins: Systematic Survey, Reference Framework, and Mapping to a Standardized Architecture

arXiv:2506.06580v2 Announce Type: replace Abstract: Insufficient data volume and quality are particularly pressing challenges in the adoption of modern subsymbolic AI. To alleviate these challenges, AI simulation uses virtual training environments in which AI agents can be safely and efficiently developed with simulated, synthetic data. Digital twins open new avenues in AI simulation, as these high-fidelity virtual replicas of physical systems are equipped with state-of-the-art simulators and the ability to further interact with the physical system for additional data collection. In this article, we report on our systematic survey of digital twin-enabled AI simulation. By analyzing 22 primary studies, we identify technological trends and derive a reference framework to situate digital twins and AI components. Based on our findings, we derive a reference framework and provide architectural guidelines by mapping it onto the ISO 23247 reference architecture for digital twins. Finally, we identify challenges and research opportunities for prospective researchers.

TMUAD: Enhancing Logical Capabilities in Unified Anomaly Detection Models with a Text Memory Bank

arXiv:2508.21795v1 Announce Type: cross Abstract: Anomaly detection, which aims to identify anomalies deviating from normal patterns, is challenging due to the limited amount of normal data available. Unlike most existing unified methods that rely on carefully designed image feature extractors and memory banks to capture logical relationships between objects, we introduce a text memory bank to enhance the detection of logical anomalies. Specifically, we propose a Three-Memory framework for Unified structural and logical Anomaly Detection (TMUAD). First, we build a class-level text memory bank for logical anomaly detection by the proposed logic-aware text extractor, which can capture rich logical descriptions of objects from input images. Second, we construct an object-level image memory bank that preserves complete object contours by extracting features from segmented objects. Third, we employ visual encoders to extract patch-level image features for constructing a patch-level memory bank for structural anomaly detection. These three complementary memory banks are used to retrieve and compare normal images that are most similar to the query image, compute anomaly scores at multiple levels, and fuse them into a final anomaly score. By unifying structural and logical anomaly detection through collaborative memory banks, TMUAD achieves state-of-the-art performance across seven publicly available datasets involving industrial and medical domains. The model and code are available at https://github.com/SIA-IDE/TMUAD.

Adaptive Heavy-Tailed Stochastic Gradient Descent

arXiv:2508.21353v1 Announce Type: new Abstract: In the era of large-scale neural network models, optimization algorithms often struggle with generalization due to an overreliance on training loss. One key insight widely accepted in the machine learning community is the idea that wide basins (regions around a local minimum where the loss increases gradually) promote better generalization by offering greater stability to small changes in input data or model parameters. In contrast, sharp minima are typically more sensitive and less stable. Motivated by two key empirical observations - the inherent heavy-tailed distribution of gradient noise in stochastic gradient descent and the Edge of Stability phenomenon during neural network training, in which curvature grows before settling at a plateau, we introduce Adaptive Heavy Tailed Stochastic Gradient Descent (AHTSGD). The algorithm injects heavier-tailed noise into the optimizer during the early stages of training to enhance exploration and gradually transitions to lighter-tailed noise as sharpness stabilizes. By dynamically adapting to the sharpness of the loss landscape throughout training, AHTSGD promotes accelerated convergence to wide basins. AHTSGD is the first algorithm to adjust the nature of injected noise into an optimizer based on the Edge of Stability phenomenon. AHTSGD consistently outperforms SGD and other noise-based methods on benchmarks like MNIST and CIFAR-10, with marked gains on noisy datasets such as SVHN. It ultimately accelerates early training from poor initializations and improves generalization across clean and noisy settings, remaining robust to learning rate choices.

TorchCP: A Python Library for Conformal Prediction

arXiv:2402.12683v4 Announce Type: replace Abstract: Conformal prediction (CP) is a powerful statistical framework that generates prediction intervals or sets with guaranteed coverage probability. While CP algorithms have evolved beyond traditional classifiers and regressors to sophisticated deep learning models like deep neural networks (DNNs), graph neural networks (GNNs), and large language models (LLMs), existing CP libraries often lack the model support and scalability for large-scale DL scenarios. This paper introduces TorchCP, a PyTorch-native library designed to integrate state-of-the-art CP algorithms into deep learning techniques, including DNN-based classifier/regressor, GNN, and LLM. Released under the LGPL-3.0 license, TorchCP comprises about 16k lines of code, validated with 100% unit test coverage and detailed documentation. Notably, TorchCP enables CP-specific training algorithms, online prediction, and GPU-accelerated batch processing, achieving up to 90% reduction in inference time on large datasets. With its low-coupling design, comprehensive suite of advanced methods, and full GPU scalability, TorchCP empowers researchers and practitioners to enhance uncertainty quantification across cutting-edge applications.

DLGAN : Time Series Synthesis Based on Dual-Layer Generative Adversarial Networks

arXiv:2508.21340v1 Announce Type: new Abstract: Time series synthesis is an effective approach to ensuring the secure circulation of time series data. Existing time series synthesis methods typically perform temporal modeling based on random sequences to generate target sequences, which often struggle to ensure the temporal dependencies in the generated time series. Additionally, directly modeling temporal features on random sequences makes it challenging to accurately capture the feature information of the original time series. To address the above issues, we propose a simple but effective generative model textbf{D}ual-textbf{L}ayer textbf{G}enerative textbf{A}dversarial textbf{N}etworks, named textbf{DLGAN}. The model decomposes the time series generation process into two stages: sequence feature extraction and sequence reconstruction. First, these two stages form a complete time series autoencoder, enabling supervised learning on the original time series to ensure that the reconstruction process can restore the temporal dependencies of the sequence. Second, a Generative Adversarial Network (GAN) is used to generate synthetic feature vectors that align with the real-time sequence feature vectors, ensuring that the generator can capture the temporal features from real time series. Extensive experiments on four public datasets demonstrate the superiority of this model across various evaluation metrics.