arXiv:2509.00258v1 Announce Type: new Abstract: We develop a probabilistic method for assessing the tail behavior and geometric stability of one-dimensional n i.i.d. samples by tracking how their span contracts when the most extreme points are trimmed. Central to our approach is the diameter-shrinkage ratio, that quantifies the relative reduction in data range as extreme points are successively removed. We derive analytical expressions, including finite-sample corrections, for the expected shrinkage under both the uniform and Gaussian hypotheses, and establish that these curves remain distinct even for moderate number of removal. We construct an elementary decision rule that assigns a sample to whichever theoretical shrinkage profile it most closely follows. This test achieves higher classification accuracy than the classical likelihood-ratio test in small-sample or noisy regimes, while preserving asymptotic consistency for large n. We further integrate our criterion into a clustering pipeline (e.g. DBSCAN), demonstrating its ability to validate one-dimensional clusters without any density estimation or parameter tuning. This work thus provides both theoretical insight and practical tools for robust distributional inference and cluster stability analysis.
Original: https://arxiv.org/abs/2509.00258