Beyond Ensembles: Simulating All-Atom Protein Dynamics in a Learned Latent Space

arXiv:2509.02196v1 Announce Type: cross Abstract: Simulating the long-timescale dynamics of biomolecules is a central challenge in computational science. While enhanced sampling methods can accelerate these simulations, they rely on pre-defined collective variables that are often difficult to identify. A recent generative model, LD-FPG, demonstrated that this problem could be bypassed by learning to sample the static equilibrium ensemble as all-atom deformations from a reference structure, establishing a powerful method for all-atom ensemble generation. However, while this approach successfully captures a system's probable conformations, it does not model the temporal evolution between them. Here we extend LD-FPG with a temporal propagator that operates within the learned latent space and compare three classes: (i) score-guided Langevin dynamics, (ii) Koopman-based linear operators, and (iii) autoregressive neural networks. Within a unified encoder-propagator-decoder framework, we evaluate long-horizon stability, backbone and side-chain ensemble fidelity, and functional free-energy landscapes. Autoregressive neural networks deliver the most robust long rollouts; score-guided Langevin best recovers side-chain thermodynamics when the score is well learned; and Koopman provides an interpretable, lightweight baseline that tends to damp fluctuations. These results clarify the trade-offs among propagators and offer practical guidance for latent-space simulators of all-atom protein dynamics.

2025-09-03 04:30 GMT · 2 months ago arxiv.org

arXiv:2509.02196v1 Announce Type: cross Abstract: Simulating the long-timescale dynamics of biomolecules is a central challenge in computational science. While enhanced sampling methods can accelerate these simulations, they rely on pre-defined collective variables that are often difficult to identify. A recent generative model, LD-FPG, demonstrated that this problem could be bypassed by learning to sample the static equilibrium ensemble as all-atom deformations from a reference structure, establishing a powerful method for all-atom ensemble generation. However, while this approach successfully captures a system's probable conformations, it does not model the temporal evolution between them. Here we extend LD-FPG with a temporal propagator that operates within the learned latent space and compare three classes: (i) score-guided Langevin dynamics, (ii) Koopman-based linear operators, and (iii) autoregressive neural networks. Within a unified encoder-propagator-decoder framework, we evaluate long-horizon stability, backbone and side-chain ensemble fidelity, and functional free-energy landscapes. Autoregressive neural networks deliver the most robust long rollouts; score-guided Langevin best recovers side-chain thermodynamics when the score is well learned; and Koopman provides an interpretable, lightweight baseline that tends to damp fluctuations. These results clarify the trade-offs among propagators and offer practical guidance for latent-space simulators of all-atom protein dynamics.

Original: https://arxiv.org/abs/2509.02196