arXiv:2509.00472v1 Announce Type: new Abstract: We introduce a Partial Functional Dynamic Backdoor Diffusion-based Causal Model (PFD-BDCM), specifically designed for causal inference in the presence of unmeasured confounders with spatial heterogeneity and temporal dependency. The proposed PFD-BDCM framework addresses the restrictions of the existing approaches by uniquely integrating models for complex spatio-temporal dynamics with the analysis of multi-resolution variables. Specifically, the framework systematically mitigates confounding bias by integrating valid backdoor adjustment sets into a diffusion-based sampling mechanism. Moreover, it accounts for the intricate dynamics of unmeasured confounders through the deployment of region-specific structural equations and conditional autoregressive processes, and accommodates variables observed at heterogeneous resolutions via basis expansions for functional data. Our theoretical analysis establishes error bounds for counterfactual estimates of PFD-BDCM, formally linking reconstruction accuracy to counterfactual fidelity under monotonicity assumptions of structural equation and invertibility assumptions of encoding function. Empirical evaluations on synthetic datasets and real-world air pollution data demonstrate PFD-BDCM's superiority over existing methods.
Original: https://arxiv.org/abs/2509.00472