Archives AI News

From Tabula Rasa to Emergent Abilities: Discovering Robot Skills via Real-World Unsupervised Quality-Diversity

arXiv:2508.19172v2 Announce Type: replace-cross Abstract: Autonomous skill discovery aims to enable robots to acquire diverse behaviors without explicit supervision. Learning such behaviors directly on physical hardware remains challenging due to safety and data efficiency constraints. Existing methods, including Quality-Diversity Actor-Critic (QDAC), require manually defined skill spaces and carefully tuned heuristics, limiting real-world applicability. We propose Unsupervised Real-world Skill Acquisition (URSA), an extension of QDAC that enables robots to autonomously discover and master diverse, high-performing skills directly in the real world. We demonstrate that URSA successfully discovers diverse locomotion skills on a Unitree A1 quadruped in both simulation and the real world. Our approach supports both heuristic-driven skill discovery and fully unsupervised settings. We also show that the learned skill repertoire can be reused for downstream tasks such as real-world damage adaptation, where URSA outperforms all baselines in 5 out of 9 simulated and 3 out of 5 real-world damage scenarios. Our results establish a new framework for real-world robot learning that enables continuous skill discovery with limited human intervention, representing a significant step toward more autonomous and adaptable robotic systems. Demonstration videos are available at https://adaptive-intelligent-robotics.github.io/URSA.

Putnam-AXIOM: A Functional and Static Benchmark for Measuring Higher Level Mathematical Reasoning in LLMs

arXiv:2508.08292v2 Announce Type: replace-cross Abstract: Current mathematical reasoning benchmarks for large language models (LLMs) are approaching saturation, with some achieving > 90% accuracy, and are increasingly compromised by training-set contamination. We introduce Putnam-AXIOM, a benchmark of 522 university-level competition problems drawn from the prestigious William Lowell Putnam Mathematical Competition, and Putnam-AXIOM Variation, an unseen companion set of 100 functional variants generated by programmatically perturbing variables and constants. The variation protocol produces an unlimited stream of equally difficult, unseen instances -- yielding a contamination-resilient test bed. On the Original set, OpenAI's o1-preview -- the strongest evaluated model -- scores 41.9%, but its accuracy drops by 19.6% (46.8% relative decrease) on the paired Variations. The remaining eighteen models show the same downward trend, ten of them with non-overlapping 95% confidence intervals. These gaps suggest memorization and highlight the necessity of dynamic benchmarks. We complement "boxed" accuracy with Teacher-Forced Accuracy (TFA), a lightweight metric that directly scores reasoning traces and automates natural language proof evaluations. Putnam-AXIOM therefore provides a rigorous, contamination-resilient evaluation framework for assessing advanced mathematical reasoning of LLMs. Data and evaluation code are publicly available at https://github.com/brando90/putnam-axiom.

Bootstrapping Learned Cost Models with Synthetic SQL Queries

arXiv:2508.19807v1 Announce Type: cross Abstract: Having access to realistic workloads for a given database instance is extremely important to enable stress and vulnerability testing, as well as to optimize for cost and performance. Recent advances in learned cost models have shown that when enough diverse SQL queries are available, one can effectively and efficiently predict the cost of running a given query against a specific database engine. In this paper, we describe our experience in exploiting modern synthetic data generation techniques, inspired by the generative AI and LLM community, to create high-quality datasets enabling the effective training of such learned cost models. Initial results show that we can improve a learned cost model's predictive accuracy by training it with 45% fewer queries than when using competitive generation approaches.

PoolFlip: A Multi-Agent Reinforcement Learning Security Environment for Cyber Defense

arXiv:2508.19488v1 Announce Type: new Abstract: Cyber defense requires automating defensive decision-making under stealthy, deceptive, and continuously evolving adversarial strategies. The FlipIt game provides a foundational framework for modeling interactions between a defender and an advanced adversary that compromises a system without being immediately detected. In FlipIt, the attacker and defender compete to control a shared resource by performing a Flip action and paying a cost. However, the existing FlipIt frameworks rely on a small number of heuristics or specialized learning techniques, which can lead to brittleness and the inability to adapt to new attacks. To address these limitations, we introduce PoolFlip, a multi-agent gym environment that extends the FlipIt game to allow efficient learning for attackers and defenders. Furthermore, we propose Flip-PSRO, a multi-agent reinforcement learning (MARL) approach that leverages population-based training to train defender agents equipped to generalize against a range of unknown, potentially adaptive opponents. Our empirical results suggest that Flip-PSRO defenders are $2times$ more effective than baselines to generalize to a heuristic attack not exposed in training. In addition, our newly designed ownership-based utility functions ensure that Flip-PSRO defenders maintain a high level of control while optimizing performance.

A Survey on Training-free Alignment of Large Language Models

arXiv:2508.09016v2 Announce Type: replace-cross Abstract: The alignment of large language models (LLMs) aims to ensure their outputs adhere to human values, ethical standards, and legal norms. Traditional alignment methods often rely on resource-intensive fine-tuning (FT), which may suffer from knowledge degradation and face challenges in scenarios where the model accessibility or computational resources are constrained. In contrast, training-free (TF) alignment techniques--leveraging in-context learning, decoding-time adjustments, and post-generation corrections--offer a promising alternative by enabling alignment without heavily retraining LLMs, making them adaptable to both open-source and closed-source environments. This paper presents the first systematic review of TF alignment methods, categorizing them by stages of pre-decoding, in-decoding, and post-decoding. For each stage, we provide a detailed examination from the viewpoint of LLMs and multimodal LLMs (MLLMs), highlighting their mechanisms and limitations. Furthermore, we identify key challenges and future directions, paving the way for more inclusive and effective TF alignment techniques. By synthesizing and organizing the rapidly growing body of research, this survey offers a guidance for practitioners and advances the development of safer and more reliable LLMs.

Data-Efficient Symbolic Regression via Foundation Model Distillation

arXiv:2508.19487v1 Announce Type: new Abstract: Discovering interpretable mathematical equations from observed data (a.k.a. equation discovery or symbolic regression) is a cornerstone of scientific discovery, enabling transparent modeling of physical, biological, and economic systems. While foundation models pre-trained on large-scale equation datasets offer a promising starting point, they often suffer from negative transfer and poor generalization when applied to small, domain-specific datasets. In this paper, we introduce EQUATE (Equation Generation via QUality-Aligned Transfer Embeddings), a data-efficient fine-tuning framework that adapts foundation models for symbolic equation discovery in low-data regimes via distillation. EQUATE combines symbolic-numeric alignment with evaluator-guided embedding optimization, enabling a principled embedding-search-generation paradigm. Our approach reformulates discrete equation search as a continuous optimization task in a shared embedding space, guided by data-equation fitness and simplicity. Experiments across three standard public benchmarks (Feynman, Strogatz, and black-box datasets) demonstrate that EQUATE consistently outperforms state-of-the-art baselines in both accuracy and robustness, while preserving low complexity and fast inference. These results highlight EQUATE as a practical and generalizable solution for data-efficient symbolic regression in foundation model distillation settings.

Analyzing Character Representation in Media Content using Multimodal Foundation Model: Effectiveness and Trust

arXiv:2506.14799v2 Announce Type: replace-cross Abstract: Recent advances in AI has made automated analysis of complex media content at scale possible while generating actionable insights regarding character representation along such dimensions as gender and age. Past works focused on quantifying representation from audio/video/text using AI models, but without having the audience in the loop. We ask, even if character distribution along demographic dimensions are available, how useful are those to the general public? Do they actually trust the numbers generated by AI models? Our work addresses these open questions by proposing a new AI-based character representation tool and performing a thorough user study. Our tool has two components: (i) An analytics extraction model based on the Contrastive Language Image Pretraining (CLIP) foundation model that analyzes visual screen data to quantify character representation across age and gender; (ii) A visualization component effectively designed for presenting the analytics to lay audience. The user study seeks empirical evidence on the usefulness and trustworthiness of the AI-generated results for carefully chosen movies presented in the form of our visualizations. We found that participants were able to understand the analytics in our visualizations, and deemed the tool `overall useful'. Participants also indicated a need for more detailed visualizations to include more demographic categories and contextual information of the characters. Participants' trust in AI-based gender and age models is seen to be moderate to low, although they were not against the use of AI in this context. Our tool including code, benchmarking, and the user study data can be found at https://github.com/debadyuti0510/Character-Representation-Media.

Distribution Shift Aware Neural Tabular Learning

arXiv:2508.19486v1 Announce Type: new Abstract: Tabular learning transforms raw features into optimized spaces for downstream tasks, but its effectiveness deteriorates under distribution shifts between training and testing data. We formalize this challenge as the Distribution Shift Tabular Learning (DSTL) problem and propose a novel Shift-Aware Feature Transformation (SAFT) framework to address it. SAFT reframes tabular learning from a discrete search task into a continuous representation-generation paradigm, enabling differentiable optimization over transformed feature sets. SAFT integrates three mechanisms to ensure robustness: (i) shift-resistant representation via embedding decorrelation and sample reweighting, (ii) flatness-aware generation through suboptimal embedding averaging, and (iii) normalization-based alignment between training and test distributions. Extensive experiments show that SAFT consistently outperforms prior tabular learning methods in terms of robustness, effectiveness, and generalization ability under diverse real-world distribution shifts.

Predicting Forced Responses of Probability Distributions via the Fluctuation-Dissipation Theorem and Generative Modeling

arXiv:2504.13333v2 Announce Type: replace-cross Abstract: We present a novel and flexible data-driven framework for estimating the response of higher-order moments of nonlinear stochastic systems to small external perturbations. The classical Generalized Fluctuation--Dissipation Theorem (GFDT) links the unperturbed steady-state distribution to the system's linear response. While standard implementations relying on Gaussian approximations can predict the mean response, they often fail to capture changes in higher-order moments. To overcome this, we combine GFDT with score-based generative modeling to estimate the system's score function directly from data. We demonstrate the framework's versatility by employing two complementary score estimation techniques tailored to the system's characteristics: (i) a clustering-based algorithm (KGMM) for systems with low-dimensional effective dynamics, and (ii) a denoising score matching method implemented with a U-Net architecture for high-dimensional, spatially-extended systems where reduced-order modeling is not feasible. Our method is validated on several stochastic models relevant to climate dynamics: three reduced-order models of increasing complexity and a 2D Navier--Stokes model representing a turbulent flow with a localized perturbation. In all cases, the approach accurately captures strongly nonlinear and non-Gaussian features of the system's response, significantly outperforming traditional Gaussian approximations.

DeepAtlas: a tool for effective manifold learning

arXiv:2508.19479v1 Announce Type: new Abstract: Manifold learning builds on the "manifold hypothesis," which posits that data in high-dimensional datasets are drawn from lower-dimensional manifolds. Current tools generate global embeddings of data, rather than the local maps used to define manifolds mathematically. These tools also cannot assess whether the manifold hypothesis holds true for a dataset. Here, we describe DeepAtlas, an algorithm that generates lower-dimensional representations of the data's local neighborhoods, then trains deep neural networks that map between these local embeddings and the original data. Topological distortion is used to determine whether a dataset is drawn from a manifold and, if so, its dimensionality. Application to test datasets indicates that DeepAtlas can successfully learn manifold structures. Interestingly, many real datasets, including single-cell RNA-sequencing, do not conform to the manifold hypothesis. In cases where data is drawn from a manifold, DeepAtlas builds a model that can be used generatively and promises to allow the application of powerful tools from differential geometry to a variety of datasets.