Archives AI News

Real-Time Intuitive AI Drawing System for Collaboration: Enhancing Human Creativity through Formal and Contextual Intent Integration

arXiv:2508.19254v1 Announce Type: cross Abstract: This paper presents a real-time generative drawing system that interprets and integrates both formal intent - the structural, compositional, and stylistic attributes of a sketch - and contextual intent - the semantic and thematic meaning inferred from its visual content - into a unified transformation process. Unlike conventional text-prompt-based generative systems, which primarily capture high-level contextual descriptions, our approach simultaneously analyzes ground-level intuitive geometric features such as line trajectories, proportions, and spatial arrangement, and high-level semantic cues extracted via vision-language models. These dual intent signals are jointly conditioned in a multi-stage generation pipeline that combines contour-preserving structural control with style- and content-aware image synthesis. Implemented with a touchscreen-based interface and distributed inference architecture, the system achieves low-latency, two-stage transformation while supporting multi-user collaboration on shared canvases. The resulting platform enables participants, regardless of artistic expertise, to engage in synchronous, co-authored visual creation, redefining human-AI interaction as a process of co-creation and mutual enhancement.

Think Smart, Act SMARL! Analyzing Probabilistic Logic Shields for Multi-Agent Reinforcement Learning

arXiv:2411.04867v3 Announce Type: replace Abstract: Safe reinforcement learning (RL) is crucial for real-world applications, and multi-agent interactions introduce additional safety challenges. While Probabilistic Logic Shields (PLS) has been a powerful proposal to enforce safety in single-agent RL, their generalizability to multi-agent settings remains unexplored. In this paper, we address this gap by conducting extensive analyses of PLS within decentralized, multi-agent environments, and in doing so, propose $textbf{Shielded Multi-Agent Reinforcement Learning (SMARL)}$ as a general framework for steering MARL towards norm-compliant outcomes. Our key contributions are: (1) a novel Probabilistic Logic Temporal Difference (PLTD) update for shielded, independent Q-learning, which incorporates probabilistic constraints directly into the value update process; (2) a probabilistic logic policy gradient method for shielded PPO with formal safety guarantees for MARL; and (3) comprehensive evaluation across symmetric and asymmetrically shielded $n$-player game-theoretic benchmarks, demonstrating fewer constraint violations and significantly better cooperation under normative constraints. These results position SMARL as an effective mechanism for equilibrium selection, paving the way toward safer, socially aligned multi-agent systems.

MuSpike: A Benchmark and Evaluation Framework for Symbolic Music Generation with Spiking Neural Networks

arXiv:2508.19251v1 Announce Type: cross Abstract: Symbolic music generation has seen rapid progress with artificial neural networks, yet remains underexplored in the biologically plausible domain of spiking neural networks (SNNs), where both standardized benchmarks and comprehensive evaluation methods are lacking. To address this gap, we introduce MuSpike, a unified benchmark and evaluation framework that systematically assesses five representative SNN architectures (SNN-CNN, SNN-RNN, SNN-LSTM, SNN-GAN and SNN-Transformer) across five typical datasets, covering tonal, structural, emotional, and stylistic variations. MuSpike emphasizes comprehensive evaluation, combining established objective metrics with a large-scale listening study. We propose new subjective metrics, targeting musical impression, autobiographical association, and personal preference, that capture perceptual dimensions often overlooked in prior work. Results reveal that (1) different SNN models exhibit distinct strengths across evaluation dimensions; (2) participants with different musical backgrounds exhibit diverse perceptual patterns, with experts showing greater tolerance toward AI-composed music; and (3) a noticeable misalignment exists between objective and subjective evaluations, highlighting the limitations of purely statistical metrics and underscoring the value of human perceptual judgment in assessing musical quality. MuSpike provides the first systematic benchmark and systemic evaluation framework for SNN models in symbolic music generation, establishing a solid foundation for future research into biologically plausible and cognitively grounded music generation.

HPC Digital Twins for Evaluating Scheduling Policies, Incentive Structures and their Impact on Power and Cooling

arXiv:2508.20016v1 Announce Type: cross Abstract: Schedulers are critical for optimal resource utilization in high-performance computing. Traditional methods to evaluate schedulers are limited to post-deployment analysis, or simulators, which do not model associated infrastructure. In this work, we present the first-of-its-kind integration of scheduling and digital twins in HPC. This enables what-if studies to understand the impact of parameter configurations and scheduling decisions on the physical assets, even before deployment, or regarching changes not easily realizable in production. We (1) provide the first digital twin framework extended with scheduling capabilities, (2) integrate various top-tier HPC systems given their publicly available datasets, (3) implement extensions to integrate external scheduling simulators. Finally, we show how to (4) implement and evaluate incentive structures, as-well-as (5) evaluate machine learning based scheduling, in such novel digital-twin based meta-framework to prototype scheduling. Our work enables what-if scenarios of HPC systems to evaluate sustainability, and the impact on the simulated system.

Federated Fine-Tuning of Sparsely-Activated Large Language Models on Resource-Constrained Devices

arXiv:2508.19078v1 Announce Type: cross Abstract: Federated fine-tuning of Mixture-of-Experts (MoE)-based large language models (LLMs) is challenging due to their massive computational requirements and the resource constraints of participants. Existing working attempts to fill this gap through model quantization, computation offloading, or expert pruning. However, they cannot achieve desired performance due to impractical system assumptions and a lack of consideration for MoE-specific characteristics. In this paper, we propose FLUX, a system designed to enable federated fine-tuning of MoE-based LLMs across participants with constrained computing resources (e.g., consumer-grade GPUs), aiming to minimize time-to-accuracy. FLUX introduces three key innovations: (1) quantization-based local profiling to estimate expert activation with minimal overhead, (2) adaptive layer-aware expert merging to reduce resource consumption while preserving accuracy, and (3) dynamic expert role assignment using an exploration-exploitation strategy to balance tuning and non-tuning experts. Extensive experiments on LLaMA-MoE and DeepSeek-MoE with multiple benchmark datasets demonstrate that FLUX significantly outperforms existing methods, achieving up to 4.75X speedup in time-to-accuracy.

WaveHiT-SR: Hierarchical Wavelet Network for Efficient Image Super-Resolution

arXiv:2508.19927v1 Announce Type: cross Abstract: Transformers have demonstrated promising performance in computer vision tasks, including image super-resolution (SR). The quadratic computational complexity of window self-attention mechanisms in many transformer-based SR methods forces the use of small, fixed windows, limiting the receptive field. In this paper, we propose a new approach by embedding the wavelet transform within a hierarchical transformer framework, called (WaveHiT-SR). First, using adaptive hierarchical windows instead of static small windows allows to capture features across different levels and greatly improve the ability to model long-range dependencies. Secondly, the proposed model utilizes wavelet transforms to decompose images into multiple frequency subbands, allowing the network to focus on both global and local features while preserving structural details. By progressively reconstructing high-resolution images through hierarchical processing, the network reduces computational complexity without sacrificing performance. The multi-level decomposition strategy enables the network to capture fine-grained information in lowfrequency components while enhancing high-frequency textures. Through extensive experimentation, we confirm the effectiveness and efficiency of our WaveHiT-SR. Our refined versions of SwinIR-Light, SwinIR-NG, and SRFormer-Light deliver cutting-edge SR results, achieving higher efficiency with fewer parameters, lower FLOPs, and faster speeds.

MovieCORE: COgnitive REasoning in Movies

arXiv:2508.19026v1 Announce Type: cross Abstract: This paper introduces MovieCORE, a novel video question answering (VQA) dataset designed to probe deeper cognitive understanding of movie content. Unlike existing datasets that focus on surface-level comprehension, MovieCORE emphasizes questions that engage System-2 thinking while remaining specific to the video material. We present an innovative agentic brainstorming approach, utilizing multiple large language models (LLMs) as thought agents to generate and refine high-quality question-answer pairs. To evaluate dataset quality, we develop a set of cognitive tests assessing depth, thought-provocation potential, and syntactic complexity. We also propose a comprehensive evaluation scheme for assessing VQA model performance on deeper cognitive tasks. To address the limitations of existing video-language models (VLMs), we introduce an agentic enhancement module, Agentic Choice Enhancement (ACE), which improves model reasoning capabilities post-training by up to 25%. Our work contributes to advancing movie understanding in AI systems and provides valuable insights into the capabilities and limitations of current VQA models when faced with more challenging, nuanced questions about cinematic content. Our project page, dataset and code can be found at https://joslefaure.github.io/assets/html/moviecore.html.

PSO-Merging: Merging Models Based on Particle Swarm Optimization

arXiv:2508.19839v1 Announce Type: cross Abstract: Model merging has emerged as an efficient strategy for constructing multitask models by integrating the strengths of multiple available expert models, thereby reducing the need to fine-tune a pre-trained model for all the tasks from scratch. Existing data-independent methods struggle with performance limitations due to the lack of data-driven guidance. Data-driven approaches also face key challenges: gradient-based methods are computationally expensive, limiting their practicality for merging large expert models, whereas existing gradient-free methods often fail to achieve satisfactory results within a limited number of optimization steps. To address these limitations, this paper introduces PSO-Merging, a novel data-driven merging method based on the Particle Swarm Optimization (PSO). In this approach, we initialize the particle swarm with a pre-trained model, expert models, and sparsified expert models. We then perform multiple iterations, with the final global best particle serving as the merged model. Experimental results on different language models show that PSO-Merging generally outperforms baseline merging methods, offering a more efficient and scalable solution for model merging.

Model Science: getting serious about verification, explanation and control of AI systems

arXiv:2508.20040v1 Announce Type: new Abstract: The growing adoption of foundation models calls for a paradigm shift from Data Science to Model Science. Unlike data-centric approaches, Model Science places the trained model at the core of analysis, aiming to interact, verify, explain, and control its behavior across diverse operational contexts. This paper introduces a conceptual framework for a new discipline called Model Science, along with the proposal for its four key pillars: Verification, which requires strict, context-aware evaluation protocols; Explanation, which is understood as various approaches to explore of internal model operations; Control, which integrates alignment techniques to steer model behavior; and Interface, which develops interactive and visual explanation tools to improve human calibration and decision-making. The proposed framework aims to guide the development of credible, safe, and human-aligned AI systems.

Safety Alignment Should Be Made More Than Just A Few Attention Heads

arXiv:2508.19697v1 Announce Type: cross Abstract: Current safety alignment for large language models(LLMs) continues to present vulnerabilities, given that adversarial prompting can effectively bypass their safety measures.Our investigation shows that these safety mechanisms predominantly depend on a limited subset of attention heads: removing or ablating these heads can severely compromise model safety. To identify and evaluate these safety-critical components, we introduce RDSHA, a targeted ablation method that leverages the model's refusal direction to pinpoint attention heads mostly responsible for safety behaviors. Further analysis shows that existing jailbreak attacks exploit this concentration by selectively bypassing or manipulating these critical attention heads. To address this issue, we propose AHD, a novel training strategy designed to promote the distributed encoding of safety-related behaviors across numerous attention heads. Experimental results demonstrate that AHD successfully distributes safety-related capabilities across more attention heads. Moreover, evaluations under several mainstream jailbreak attacks show that models trained with AHD exhibit considerably stronger safety robustness, while maintaining overall functional utility.