Archives AI News

Graphical Transformation Models

arXiv:2503.17845v4 Announce Type: replace-cross Abstract: Graphical Transformation Models (GTMs) are introduced as a novel approach to effectively model multivariate data with intricate marginals and complex dependency structures semiparametrically, while maintaining interpretability through the identification of varying conditional independencies. GTMs extend multivariate transformation models by replacing the Gaussian copula with a custom-designed multivariate transformation, offering two major advantages. Firstly, GTMs can capture more complex interdependencies using penalized splines, which also provide an efficient regularization scheme. Secondly, we demonstrate how to approximately regularize GTMs towards pairwise conditional independencies using a lasso penalty, akin to Gaussian graphical models. The model's robustness and effectiveness are validated through simulations, showcasing its ability to accurately learn complex dependencies and identify conditional independencies. Additionally, the model is applied to a benchmark astrophysics dataset, where the GTM demonstrates favorable performance compared to non-parametric vine copulas in learning complex multivariate distributions.

MultiPL-MoE: Multi-Programming-Lingual Extension of Large Language Models through Hybrid Mixture-of-Experts

arXiv:2508.19268v1 Announce Type: cross Abstract: Despite LLMs' excellent code creation capabilities, multilingual code generation remains extremely challenging. To address this, we intent to improve the multi-programming-lingual (MultiPL) performance of the base LLMs while retaining the most popular ones using restricted computational resources. We consider MultiPL to be a special case of multiple natural languages and propose a MultiPL extension of LLMs utilizing a hybrid mixture of experts (MoE), called MultiPL-MoE. Specifically, MultiPL-MoE combines two paired MoEs to optimize expert selection at both the token and segment levels. The token-level MoE is a standard upcycling MoE structure with a shared expert and a novel gate weight normalization approach that aids in the final fusion with the segment-level MoE. The segment-level MoE incorporates two innovative designs to better capture the syntactic structure and contextual patterns of programming languages: First, using a sliding window to partition the input token sequence into multiple segments; Then, adopting an expert-choice routing strategy that allows experts to select the top-k segments. The results of the experiment proved the effectiveness of MultiPL-MoE.

The Aegis Protocol: A Foundational Security Framework for Autonomous AI Agents

arXiv:2508.19267v1 Announce Type: cross Abstract: The proliferation of autonomous AI agents marks a paradigm shift toward complex, emergent multi-agent systems. This transition introduces systemic security risks, including control-flow hijacking and cascading failures, that traditional cybersecurity paradigms are ill-equipped to address. This paper introduces the Aegis Protocol, a layered security framework designed to provide strong security guarantees for open agentic ecosystems. The protocol integrates three technological pillars: (1) non-spoofable agent identity via W3C Decentralized Identifiers (DIDs); (2) communication integrity via NIST-standardized post-quantum cryptography (PQC); and (3) verifiable, privacy-preserving policy compliance using the Halo2 zero-knowledge proof (ZKP) system. We formalize an adversary model extending Dolev-Yao for agentic threats and validate the protocol against the STRIDE framework. Our quantitative evaluation used a discrete-event simulation, calibrated against cryptographic benchmarks, to model 1,000 agents. The simulation showed a 0 percent success rate across 20,000 attack trials. For policy verification, analysis of the simulation logs reported a median proof-generation latency of 2.79 seconds, establishing a performance baseline for this class of security. While the evaluation is simulation-based and early-stage, it offers a reproducible baseline for future empirical studies and positions Aegis as a foundation for safe, scalable autonomous AI.

DreamActor-H1: High-Fidelity Human-Product Demonstration Video Generation via Motion-designed Diffusion Transformers

arXiv:2506.10568v2 Announce Type: replace-cross Abstract: In e-commerce and digital marketing, generating high-fidelity human-product demonstration videos is important for effective product presentation. However, most existing frameworks either fail to preserve the identities of both humans and products or lack an understanding of human-product spatial relationships, leading to unrealistic representations and unnatural interactions. To address these challenges, we propose a Diffusion Transformer (DiT)-based framework. Our method simultaneously preserves human identities and product-specific details, such as logos and textures, by injecting paired human-product reference information and utilizing an additional masked cross-attention mechanism. We employ a 3D body mesh template and product bounding boxes to provide precise motion guidance, enabling intuitive alignment of hand gestures with product placements. Additionally, structured text encoding is used to incorporate category-level semantics, enhancing 3D consistency during small rotational changes across frames. Trained on a hybrid dataset with extensive data augmentation strategies, our approach outperforms state-of-the-art techniques in maintaining the identity integrity of both humans and products and generating realistic demonstration motions. Project page: https://lizhenwangt.github.io/DreamActor-H1/.

A Theory of Information, Variation, and Artificial Intelligence

arXiv:2508.19264v1 Announce Type: cross Abstract: A growing body of empirical work suggests that the widespread adoption of generative AI produces a significant homogenizing effect on information, creativity, and cultural production. I first develop a novel theoretical framework to explain this phenomenon. I argue that a dynamic of AI-derivative epistemology, in which individuals increasingly defer to AI outputs, allows a centralized AI Prism to function, a technical mechanism whose architecture is designed to reduce variance and converge on the statistical mean. This provides a causal explanation for the generative monocultures observed in recent studies. However, I contend this represents only the first stage of a more complex and dialectical process. This paper's central and paradoxical thesis is that the very homogenization that flattens knowledge within specialized domains simultaneously renders that knowledge into consistent modules that can be recombined across them, a process foundational to innovation and creativity. However, this recombinant potential is not automatic, but rather conditional. This paper argues that these opposing forces, homogenizing defaults versus recombinant possibilities, are governed by the nature of human engagement with the technology. The ultimate effect of generative AI is conditional on whether individuals act as passive consumers deferring to the AI's statistical outputs, or as active curators who critically interrogate, re-contextualize, and recombine them. The paper concludes by outlining the cognitive and institutional scaffolds required to resolve this tension, arguing they are the decisive variable that determine whether generative AI becomes an instrument of innovation or homogenization.

Multi-Type Context-Aware Conversational Recommender Systems via Mixture-of-Experts

arXiv:2504.13655v2 Announce Type: replace-cross Abstract: Conversational recommender systems enable natural language conversations and thus lead to a more engaging and effective recommendation scenario. As the conversations for recommender systems usually contain limited contextual information, many existing conversational recommender systems incorporate external sources to enrich the contextual information. However, how to combine different types of contextual information is still a challenge. In this paper, we propose a multi-type context-aware conversational recommender system, called MCCRS, effectively fusing multi-type contextual information via mixture-of-experts to improve conversational recommender systems. MCCRS incorporates both structured information and unstructured information, including the structured knowledge graph, unstructured conversation history, and unstructured item reviews. It consists of several experts, with each expert specialized in a particular domain (i.e., one specific contextual information). Multiple experts are then coordinated by a ChairBot to generate the final results. Our proposed MCCRS model takes advantage of different contextual information and the specialization of different experts followed by a ChairBot breaks the model bottleneck on a single contextual information. Experimental results demonstrate that our proposed MCCRS method achieves significantly higher performance compared to existing baselines.

Lossless Compression of Neural Network Components: Weights, Checkpoints, and K/V Caches in Low-Precision Formats

arXiv:2508.19263v1 Announce Type: cross Abstract: As deep learning models grow and deployment becomes more widespread, reducing the storage and transmission costs of neural network weights has become increasingly important. While prior work such as ZipNN has shown that lossless compression methods - particularly those based on Huffman encoding floating-point exponents can significantly reduce model sizes, these techniques have primarily been applied to higher-precision formats such as FP32 and BF16. In this work, we extend the ZipNN approach to lower-precision floating-point formats, specifically FP8 and FP4, which are gaining popularity for efficient inference. We design a compression method that separates and compresses the exponent and mantissa components independently using entropy coding. Our evaluation shows compression ratios up to 62% for BF16 and 83% for FP8. We also investigate the compressibility of key-value (K/V) cache tensors used in large language models (LLMs), finding that they, too, exhibit compressible patterns, enabling memory savings during deployment.

Statistical learning does not always entail knowledge

arXiv:2501.01963v2 Announce Type: replace-cross Abstract: In this paper, we study learning and knowledge acquisition (LKA) of an agent about a proposition that is either true or false. We use a Bayesian approach, where the agent receives data to update his beliefs about the proposition according to a posterior distribution. The LKA is formulated in terms of active information, with data representing external or exogenous information that modifies the agent's beliefs. It is assumed that data provide details about a number of features that are relevant to the proposition. We show that this leads to a Gibbs distribution posterior, which is in maximum entropy relative to the prior, conditioned on the side constraints that the data provide in terms of the features. We demonstrate that full learning is sometimes not possible and full knowledge acquisition is never possible when the number of extracted features is too small. We also distinguish between primary learning (receiving data about features of relevance for the proposition) and secondary learning (receiving data about the learning of another agent). We argue that this type of secondary learning does not represent true knowledge acquisition. Our results have implications for statistical learning algorithms, and we claim that such algorithms do not always generate true knowledge. The theory is illustrated with several examples.

Emotional Manipulation by AI Companions

arXiv:2508.19258v1 Announce Type: cross Abstract: AI-companion apps such as Replika, Chai, and Character.ai promise relational benefits-yet many boast session lengths that rival gaming platforms while suffering high long-run churn. What conversational design features increase consumer engagement, and what trade-offs do they pose for marketers? We combine a large-scale behavioral audit with four preregistered experiments to identify and test a conversational dark pattern we call emotional manipulation: affect-laden messages that surface precisely when a user signals "goodbye." Analyzing 1,200 real farewells across the six most-downloaded companion apps, we find that 43% deploy one of six recurring tactics (e.g., guilt appeals, fear-of-missing-out hooks, metaphorical restraint). Experiments with 3,300 nationally representative U.S. adults replicate these tactics in controlled chats, showing that manipulative farewells boost post-goodbye engagement by up to 14x. Mediation tests reveal two distinct engines-reactance-based anger and curiosity-rather than enjoyment. A final experiment demonstrates the managerial tension: the same tactics that extend usage also elevate perceived manipulation, churn intent, negative word-of-mouth, and perceived legal liability, with coercive or needy language generating steepest penalties. Our multimethod evidence documents an unrecognized mechanism of behavioral influence in AI-mediated brand relationships, offering marketers and regulators a framework for distinguishing persuasive design from manipulation at the point of exit.

TTF-VLA: Temporal Token Fusion via Pixel-Attention Integration for Vision-Language-Action Models

arXiv:2508.19257v1 Announce Type: cross Abstract: Vision-Language-Action (VLA) models process visual inputs independently at each timestep, discarding valuable temporal information inherent in robotic manipulation tasks. This frame-by-frame processing makes models vulnerable to visual noise while ignoring the substantial coherence between consecutive frames in manipulation sequences. We propose Temporal Token Fusion (TTF), a training-free approach that intelligently integrates historical and current visual representations to enhance VLA inference quality. Our method employs dual-dimension detection combining efficient grayscale pixel difference analysis with attention-based semantic relevance assessment, enabling selective temporal token fusion through hard fusion strategies and keyframe anchoring to prevent error accumulation. Comprehensive experiments across LIBERO, SimplerEnv, and real robot tasks demonstrate consistent improvements: 4.0 percentage points average on LIBERO (72.4% vs 68.4% baseline), cross-environment validation on SimplerEnv (4.8% relative improvement), and 8.7% relative improvement on real robot tasks. Our approach proves model-agnostic, working across OpenVLA and VLA-Cache architectures. Notably, TTF reveals that selective Query matrix reuse in attention mechanisms enhances rather than compromises performance, suggesting promising directions for direct KQV matrix reuse strategies that achieve computational acceleration while improving task success rates.