Hybrid Topic-Semantic Labeling and Graph Embeddings for Unsupervised Legal Document Clustering

arXiv:2509.00990v1 Announce Type: new Abstract: Legal documents pose unique challenges for text classification due to their domain-specific language and often limited labeled data. This paper proposes a hybrid approach for classifying legal texts by combining unsupervised topic and graph embeddings with a supervised model. We employ Top2Vec to learn semantic document embeddings and automatically discover latent topics, and Node2Vec to capture structural relationships via a bipartite graph of legal documents. The embeddings are combined and clustered using KMeans, yielding coherent groupings of documents. Our computations on a legal document dataset demonstrate that the combined Top2Vec+Node2Vec approach improves clustering quality over text-only or graph-only embeddings. We conduct a sensitivity analysis of hyperparameters, such as the number of clusters and the dimensionality of the embeddings, and demonstrate that our method achieves competitive performance against baseline Latent Dirichlet Allocation (LDA) and Non-Negative Matrix Factorization (NMF) models. Key findings indicate that while the pipeline presents an innovative approach to unsupervised legal document analysis by combining semantic topic modeling with graph embedding techniques, its efficacy is contingent upon the quality of initial topic generation and the representational power of the chosen embedding models for specialized legal language. Strategic recommendations include the exploration of domain-specific embeddings, more comprehensive hyperparameter tuning for Node2Vec, dynamic determination of cluster numbers, and robust human-in-the-loop validation processes to enhance legal relevance and trustworthiness. The pipeline demonstrates potential for exploratory legal data analysis and as a precursor to supervised learning tasks but requires further refinement and domain-specific adaptation for practical legal applications.

2025-09-03 04:00 GMT · 1 day ago arxiv.org

arXiv:2509.00990v1 Announce Type: new Abstract: Legal documents pose unique challenges for text classification due to their domain-specific language and often limited labeled data. This paper proposes a hybrid approach for classifying legal texts by combining unsupervised topic and graph embeddings with a supervised model. We employ Top2Vec to learn semantic document embeddings and automatically discover latent topics, and Node2Vec to capture structural relationships via a bipartite graph of legal documents. The embeddings are combined and clustered using KMeans, yielding coherent groupings of documents. Our computations on a legal document dataset demonstrate that the combined Top2Vec+Node2Vec approach improves clustering quality over text-only or graph-only embeddings. We conduct a sensitivity analysis of hyperparameters, such as the number of clusters and the dimensionality of the embeddings, and demonstrate that our method achieves competitive performance against baseline Latent Dirichlet Allocation (LDA) and Non-Negative Matrix Factorization (NMF) models. Key findings indicate that while the pipeline presents an innovative approach to unsupervised legal document analysis by combining semantic topic modeling with graph embedding techniques, its efficacy is contingent upon the quality of initial topic generation and the representational power of the chosen embedding models for specialized legal language. Strategic recommendations include the exploration of domain-specific embeddings, more comprehensive hyperparameter tuning for Node2Vec, dynamic determination of cluster numbers, and robust human-in-the-loop validation processes to enhance legal relevance and trustworthiness. The pipeline demonstrates potential for exploratory legal data analysis and as a precursor to supervised learning tasks but requires further refinement and domain-specific adaptation for practical legal applications.

Original: https://arxiv.org/abs/2509.00990