Gaming and Cooperation in Federated Learning: What Can Happen and How to Monitor It

arXiv:2509.02391v1 Announce Type: cross Abstract: The success of Federated Learning depends on the actions that participants take out of sight. We model Federated Learning not as a mere optimization task but as a strategic system entangled with rules and incentives. From this perspective, we present an analytical framework that makes it possible to clearly identify where behaviors that genuinely improve performance diverge from those that merely target metrics. We introduce two indices that respectively quantify behavioral incentives and collective performance loss, and we use them as the basis for consistently interpreting the impact of operational choices such as rule design, the level of information disclosure, evaluation methods, and aggregator switching. We further summarize thresholds, auto-switch rules, and early warning signals into a checklist that can be applied directly in practice, and we provide both a practical algorithm for allocating limited audit resources and a performance guarantee. Simulations conducted across diverse environments consistently validate the patterns predicted by our framework, and we release all procedures for full reproducibility. While our approach operates most strongly under several assumptions, combining periodic recalibration, randomization, and connectivity-based alarms enables robust application under the variability of real-world operations. We present both design principles and operational guidelines that lower the incentives for metric gaming while sustaining and expanding stable cooperation.

2025-09-03 04:00 GMT · 23 hours ago arxiv.org

arXiv:2509.02391v1 Announce Type: cross Abstract: The success of Federated Learning depends on the actions that participants take out of sight. We model Federated Learning not as a mere optimization task but as a strategic system entangled with rules and incentives. From this perspective, we present an analytical framework that makes it possible to clearly identify where behaviors that genuinely improve performance diverge from those that merely target metrics. We introduce two indices that respectively quantify behavioral incentives and collective performance loss, and we use them as the basis for consistently interpreting the impact of operational choices such as rule design, the level of information disclosure, evaluation methods, and aggregator switching. We further summarize thresholds, auto-switch rules, and early warning signals into a checklist that can be applied directly in practice, and we provide both a practical algorithm for allocating limited audit resources and a performance guarantee. Simulations conducted across diverse environments consistently validate the patterns predicted by our framework, and we release all procedures for full reproducibility. While our approach operates most strongly under several assumptions, combining periodic recalibration, randomization, and connectivity-based alarms enables robust application under the variability of real-world operations. We present both design principles and operational guidelines that lower the incentives for metric gaming while sustaining and expanding stable cooperation.

Original: https://arxiv.org/abs/2509.02391