Analyzing Character Representation in Media Content using Multimodal Foundation Model: Effectiveness and Trust

arXiv:2506.14799v2 Announce Type: replace-cross Abstract: Recent advances in AI has made automated analysis of complex media content at scale possible while generating actionable insights regarding character representation along such dimensions as gender and age. Past works focused on quantifying representation from audio/video/text using AI models, but without having the audience in the loop. We ask, even if character distribution along demographic dimensions are available, how useful are those to the general public? Do they actually trust the numbers generated by AI models? Our work addresses these open questions by proposing a new AI-based character representation tool and performing a thorough user study. Our tool has two components: (i) An analytics extraction model based on the Contrastive Language Image Pretraining (CLIP) foundation model that analyzes visual screen data to quantify character representation across age and gender; (ii) A visualization component effectively designed for presenting the analytics to lay audience. The user study seeks empirical evidence on the usefulness and trustworthiness of the AI-generated results for carefully chosen movies presented in the form of our visualizations. We found that participants were able to understand the analytics in our visualizations, and deemed the tool `overall useful'. Participants also indicated a need for more detailed visualizations to include more demographic categories and contextual information of the characters. Participants' trust in AI-based gender and age models is seen to be moderate to low, although they were not against the use of AI in this context. Our tool including code, benchmarking, and the user study data can be found at https://github.com/debadyuti0510/Character-Representation-Media.

2025-08-28 14:09 GMT · 6 days ago arxiv.org

arXiv:2506.14799v2 Announce Type: replace-cross Abstract: Recent advances in AI has made automated analysis of complex media content at scale possible while generating actionable insights regarding character representation along such dimensions as gender and age. Past works focused on quantifying representation from audio/video/text using AI models, but without having the audience in the loop. We ask, even if character distribution along demographic dimensions are available, how useful are those to the general public? Do they actually trust the numbers generated by AI models? Our work addresses these open questions by proposing a new AI-based character representation tool and performing a thorough user study. Our tool has two components: (i) An analytics extraction model based on the Contrastive Language Image Pretraining (CLIP) foundation model that analyzes visual screen data to quantify character representation across age and gender; (ii) A visualization component effectively designed for presenting the analytics to lay audience. The user study seeks empirical evidence on the usefulness and trustworthiness of the AI-generated results for carefully chosen movies presented in the form of our visualizations. We found that participants were able to understand the analytics in our visualizations, and deemed the tool `overall useful'. Participants also indicated a need for more detailed visualizations to include more demographic categories and contextual information of the characters. Participants' trust in AI-based gender and age models is seen to be moderate to low, although they were not against the use of AI in this context. Our tool including code, benchmarking, and the user study data can be found at https://github.com/debadyuti0510/Character-Representation-Media.

Original: https://arxiv.org/abs/2506.14799