A Mixture of Experts Gating Network for Enhanced Surrogate Modeling in External Aerodynamics

arXiv:2508.21249v1 Announce Type: new Abstract: The computational cost associated with high-fidelity CFD simulations remains a significant bottleneck in the automotive design and optimization cycle. While ML-based surrogate models have emerged as a promising alternative to accelerate aerodynamic predictions, the field is characterized by a diverse and rapidly evolving landscape of specialized neural network architectures, with no single model demonstrating universal superiority. This paper introduces a novel meta-learning framework that leverages this architectural diversity as a strength. We propose a Mixture of Experts (MoE) model that employs a dedicated gating network to dynamically and optimally combine the predictions from three heterogeneous, state-of-the-art surrogate models: DoMINO, a decomposable multi-scale neural operator; X-MeshGraphNet, a scalable multi-scale graph neural network; and FigConvNet, a factorized implicit global convolution network. The gating network learns a spatially-variant weighting strategy, assigning credibility to each expert based on its localized performance in predicting surface pressure and wall shear stress fields. To prevent model collapse and encourage balanced expert contributions, we integrate an entropy regularization term into the training loss function. The entire system is trained and validated on the DrivAerML dataset, a large-scale, public benchmark of high-fidelity CFD simulations for automotive aerodynamics. Quantitative results demonstrate that the MoE model achieves a significant reduction in L-2 prediction error, outperforming not only the ensemble average but also the most accurate individual expert model across all evaluated physical quantities. This work establishes the MoE framework as a powerful and effective strategy for creating more robust and accurate composite surrogate models by synergistically combining the complementary strengths of specialized architectures.

2025-09-01 04:00 GMT · 22 hours ago arxiv.org

arXiv:2508.21249v1 Announce Type: new Abstract: The computational cost associated with high-fidelity CFD simulations remains a significant bottleneck in the automotive design and optimization cycle. While ML-based surrogate models have emerged as a promising alternative to accelerate aerodynamic predictions, the field is characterized by a diverse and rapidly evolving landscape of specialized neural network architectures, with no single model demonstrating universal superiority. This paper introduces a novel meta-learning framework that leverages this architectural diversity as a strength. We propose a Mixture of Experts (MoE) model that employs a dedicated gating network to dynamically and optimally combine the predictions from three heterogeneous, state-of-the-art surrogate models: DoMINO, a decomposable multi-scale neural operator; X-MeshGraphNet, a scalable multi-scale graph neural network; and FigConvNet, a factorized implicit global convolution network. The gating network learns a spatially-variant weighting strategy, assigning credibility to each expert based on its localized performance in predicting surface pressure and wall shear stress fields. To prevent model collapse and encourage balanced expert contributions, we integrate an entropy regularization term into the training loss function. The entire system is trained and validated on the DrivAerML dataset, a large-scale, public benchmark of high-fidelity CFD simulations for automotive aerodynamics. Quantitative results demonstrate that the MoE model achieves a significant reduction in L-2 prediction error, outperforming not only the ensemble average but also the most accurate individual expert model across all evaluated physical quantities. This work establishes the MoE framework as a powerful and effective strategy for creating more robust and accurate composite surrogate models by synergistically combining the complementary strengths of specialized architectures.

Original: https://arxiv.org/abs/2508.21249