arXiv:2508.20067v1 Announce Type: cross Abstract: A key objective in spatial statistics is to simulate from the distribution of a spatial process at a selection of unobserved locations conditional on observations (i.e., a predictive distribution) to enable spatial prediction and uncertainty quantification. However, exact conditional simulation from this predictive distribution is intractable or inefficient for many spatial process models. In this paper, we propose neural conditional simulation (NCS), a general method for spatial conditional simulation that is based on neural diffusion models. Specifically, using spatial masks, we implement a conditional score-based diffusion model that evolves Gaussian noise into samples from a predictive distribution when given a partially observed spatial field and spatial process parameters as inputs. The diffusion model relies on a neural network that only requires unconditional samples from the spatial process for training. Once trained, the diffusion model is amortized with respect to the observations in the partially observed field, the number and locations of those observations, and the spatial process parameters, and can therefore be used to conditionally simulate from a broad class of predictive distributions without retraining the neural network. We assess the NCS-generated simulations against simulations from the true conditional distribution of a Gaussian process model, and against Markov chain Monte Carlo (MCMC) simulations from a Brown–Resnick process model for spatial extremes. In the latter case, we show that it is more efficient and accurate to conditionally simulate using NCS than classical MCMC techniques implemented in standard software. We conclude that NCS enables efficient and accurate conditional simulation from spatial predictive distributions that are challenging to sample from using traditional methods.
Original: https://arxiv.org/abs/2508.20067