arXiv:2508.19268v1 Announce Type: cross Abstract: Despite LLMs' excellent code creation capabilities, multilingual code generation remains extremely challenging. To address this, we intent to improve the multi-programming-lingual (MultiPL) performance of the base LLMs while retaining the most popular ones using restricted computational resources. We consider MultiPL to be a special case of multiple natural languages and propose a MultiPL extension of LLMs utilizing a hybrid mixture of experts (MoE), called MultiPL-MoE. Specifically, MultiPL-MoE combines two paired MoEs to optimize expert selection at both the token and segment levels. The token-level MoE is a standard upcycling MoE structure with a shared expert and a novel gate weight normalization approach that aids in the final fusion with the segment-level MoE. The segment-level MoE incorporates two innovative designs to better capture the syntactic structure and contextual patterns of programming languages: First, using a sliding window to partition the input token sequence into multiple segments; Then, adopting an expert-choice routing strategy that allows experts to select the top-k segments. The results of the experiment proved the effectiveness of MultiPL-MoE.
Original: https://arxiv.org/abs/2508.19268