A Theory of Information, Variation, and Artificial Intelligence

arXiv:2508.19264v1 Announce Type: cross Abstract: A growing body of empirical work suggests that the widespread adoption of generative AI produces a significant homogenizing effect on information, creativity, and cultural production. I first develop a novel theoretical framework to explain this phenomenon. I argue that a dynamic of AI-derivative epistemology, in which individuals increasingly defer to AI outputs, allows a centralized AI Prism to function, a technical mechanism whose architecture is designed to reduce variance and converge on the statistical mean. This provides a causal explanation for the generative monocultures observed in recent studies. However, I contend this represents only the first stage of a more complex and dialectical process. This paper's central and paradoxical thesis is that the very homogenization that flattens knowledge within specialized domains simultaneously renders that knowledge into consistent modules that can be recombined across them, a process foundational to innovation and creativity. However, this recombinant potential is not automatic, but rather conditional. This paper argues that these opposing forces, homogenizing defaults versus recombinant possibilities, are governed by the nature of human engagement with the technology. The ultimate effect of generative AI is conditional on whether individuals act as passive consumers deferring to the AI's statistical outputs, or as active curators who critically interrogate, re-contextualize, and recombine them. The paper concludes by outlining the cognitive and institutional scaffolds required to resolve this tension, arguing they are the decisive variable that determine whether generative AI becomes an instrument of innovation or homogenization.

2025-08-28 14:09 GMT · 5 days ago arxiv.org

arXiv:2508.19264v1 Announce Type: cross Abstract: A growing body of empirical work suggests that the widespread adoption of generative AI produces a significant homogenizing effect on information, creativity, and cultural production. I first develop a novel theoretical framework to explain this phenomenon. I argue that a dynamic of AI-derivative epistemology, in which individuals increasingly defer to AI outputs, allows a centralized AI Prism to function, a technical mechanism whose architecture is designed to reduce variance and converge on the statistical mean. This provides a causal explanation for the generative monocultures observed in recent studies. However, I contend this represents only the first stage of a more complex and dialectical process. This paper's central and paradoxical thesis is that the very homogenization that flattens knowledge within specialized domains simultaneously renders that knowledge into consistent modules that can be recombined across them, a process foundational to innovation and creativity. However, this recombinant potential is not automatic, but rather conditional. This paper argues that these opposing forces, homogenizing defaults versus recombinant possibilities, are governed by the nature of human engagement with the technology. The ultimate effect of generative AI is conditional on whether individuals act as passive consumers deferring to the AI's statistical outputs, or as active curators who critically interrogate, re-contextualize, and recombine them. The paper concludes by outlining the cognitive and institutional scaffolds required to resolve this tension, arguing they are the decisive variable that determine whether generative AI becomes an instrument of innovation or homogenization.

Original: https://arxiv.org/abs/2508.19264